




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西南宁二中、柳州高中数学高一第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数y=sin2x的图象向右平移A.在区间[-πB.在区间[5πC.在区间[-πD.在区间[π2.不等式x2+ax+4>0对任意实数x恒成立,则实数a的取值范围为()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.134.已知点是直线上一动点,与是圆的两条切线,为切点,则四边形的最小面积为()A. B. C. D.5.设是复数,从,,,,,,中选取若干对象组成集合,则这样的集合最多有()A.3个元素 B.4个元素 C.5个元素 D.6个元素6.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对7.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.8.设,是两个不同的平面,a,b是两条不同的直线,给出下列四个命题,正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则9.执行如下的程序框图,则输出的是()A. B.C. D.10.在中,若,则的形状是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰三角形或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知在数列中,,,则数列的通项公式______.12.直线与直线垂直,则实数的值为_______.13.已知数列的通项公式,,前项和达到最大值时,的值为______.14.已知,则15.在中,为边中点,且,,则______.16.函数的反函数为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.18.已知向量,,.(1)若,求实数的值;(2)若,求向量与的夹角.19.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有20.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.21.已知数列满足:.(1)证明数列是等比数列,并求数列的通项;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
函数y=sin2x的图象向右平移y=sin2kπ-π单调递减区间:2kπ+π2≤2x-π3【题目详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.2、A【解题分析】
根据二次函数的性质求解.【题目详解】不等式x2+ax+4>0对任意实数x恒成立,则,∴.故选A.【题目点拨】本题考查一元二次不等式恒成立问题,解题时可借助二次函数的图象求解.3、D【解题分析】试题分析::∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=1.考点:分层抽样方法4、A【解题分析】
利用当与直线垂直时,取最小值,并利用点到直线的距离公式计算出的最小值,然后利用勾股定理计算出、的最小值,最后利用三角形的面积公式可求出四边形面积的最小值.【题目详解】如下图所示:由切线的性质可知,,,且,,当取最小值时,、也取得最小值,显然当与直线垂直时,取最小值,且该最小值为点到直线的距离,即,此时,,四边形面积的最小值为,故选A.【题目点拨】本题考查直线与圆的位置关系,考查切线长的计算以及四边形的面积,本题在求解切线长的最小值时,要抓住以下两点:(1)计算切线长应利用勾股定理,即以点到圆心的距离为斜边,切线长与半径为两直角边;(2)切线长取最小值时,点到圆心的距离也取到最小值.5、A【解题分析】
设复数分别计算出以上式子,根据集合的元素互异性,可判断答案.【题目详解】解:设复数,,,,故由以上的数组成的集合最多有,,这个元素,故选:【题目点拨】本题考查复数的运算及相关概念,属于中档题.6、A【解题分析】
利用正弦定理求出的值,再结合,得出,从而可得出的值。【题目详解】由正弦定理得,,,则,所以,,故选:A。【题目点拨】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。7、D【解题分析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【题目详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【题目点拨】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题8、C【解题分析】
利用线面、面面之间的位置关系逐一判断即可.【题目详解】对于A,若,,则平行、相交、异面均有可能,故A不正确;对于B,若,,,则垂直、平行均有可能,故B不正确;对于C,若,,,根据线面垂直的定义可知内的两条相交线线与内的两条相交线平行,故,故C正确;对于D,由C可知,D不正确;故选:C【题目点拨】本题考查了由线面平行、线面垂直判断线面、线线、面面之间的位置关系,属于基础题.9、A【解题分析】
列出每一步算法循环,可得出输出结果的值.【题目详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【题目点拨】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.10、D【解题分析】
,两种情况对应求解.【题目详解】所以或故答案选D【题目点拨】本题考查了诱导公式,漏解是容易发生的错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
通过变形可知,累乘计算即得结论.【题目详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【题目点拨】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.12、【解题分析】
由题得(-1),解之即得a的值.【题目详解】由题得(-1),所以a=2.故答案为;2【题目点拨】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.13、或【解题分析】
令,求出的取值范围,即可得出达到最大值时对应的值.【题目详解】令,解得,因此,当或时,前项和达到最大值.故答案为:或.【题目点拨】本题考查等差数列前项和最值的求解,可以利用关于的二次函数,由二次函数的基本性质求得,也可以利用等差数列所有非正项或非负项相加即得,考查计算能力,属于基础题.14、28【解题分析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算15、0【解题分析】
根据向量,,取模平方相减得到答案.【题目详解】两个等式平方相减得到:故答案为0【题目点拨】本题考查了向量的加减,模长,意在考查学生的计算能力.16、【解题分析】
由原函数的解析式解出自变量x的解析式,再把x和y交换位置,即可得到结果.【题目详解】解:记∴故反函数为:【题目点拨】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】
(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.【题目详解】(1)由得圆心,∵圆的半径为1,∴圆的方程为:,显然切线的斜率一定存在,设所求圆的切线方程为,即.∴,∴,∴或.∴所求圆的切线方程为或.(2)∵圆的圆心在直线:上,所以,设圆心为,则圆的方程为.又∵,∴设为,则,整理得,设为圆.所以点应该既在圆上又在圆上,即圆和圆有交点,∴,由,得,由,得.综上所述,的取值范围为.考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆上存在点,使问题转化为,两圆有公共点问题是解决问题的关键所在.18、(1);(2)【解题分析】
(1)由向量平行的坐标表示可构造方程求得结果;(2)利用向量夹角公式可求得,进而根据向量夹角的范围求得结果.【题目详解】(1),解得:(2)又【题目点拨】本题考查平面向量共线的坐标表示、向量夹角的求解问题;考查学生对于平面向量坐标运算、数量积运算掌握的熟练程度,属于基础应用问题.19、(1)证明见解析.(2)证明见解析.【解题分析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不等式性质进行放缩,求得后,即可证明不等式成立.【题目详解】(1)证明:各项为正数的数列满足:则,,同取倒数可得,所以,由等差数列定义可知数列为等差数列.(2)证明:由(1)可知数列为等差数列.,则数列是以为首项,以为公差的等差数列.则,令,因为,所以,则,所以,所以,所以由不等式性质可知,若,则总成立,因而,所以所以不等式得证.【题目点拨】本题考查了数列递推公式的应用,由定义证明等差数列,换元法及放缩法在证明不等式中的应用,属于中档题.20、(1),,;(2),.【解题分析】
(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【题目详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【题目点拨】本题考查向量的数量积与模的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力系统改造项目合同范本2025
- 生产员工培训
- 良肢位摆放护理教案
- 仓储物流设备租赁合同范例
- 美瞳行业竞品分析
- 植物模拟试题(含参考答案)
- 工程项目合同进度协议书
- 债务偿还及分割合同
- 矿山地质工作总结
- 农业机械设备租赁合同样本2
- 装修工程合同范本(中英文版)
- 成人住院患者静脉血栓栓塞症预防护理
- 导游知识与技能训练智慧树知到期末考试答案章节答案2024年丽江文化旅游学院
- 无小孩无共同财产离婚协议书
- 企业多元化与包容性政策
- 专题22 【五年中考+一年模拟】 几何压轴题-备战2023年温州中考数学真题模拟题分类汇编(原卷版)
- 法律法规合规性评价记录
- 2024年烧烤行业市场分析报告
- 2024年广东省2024届高三二模化学试卷(含答案)
- 压力容器操作培训
- 中国企业危机年度报告(2024)-复旦知微研究院
评论
0/150
提交评论