版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省清流县第二中学数学高一第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,则()A. B.C. D.2.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.33.若直线经过点,则此直线的倾斜角是()A. B. C. D.4.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获5.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.6.在中,内角所对的边分别为,且,,,则()A. B. C. D.7.函数的最小正周期为,则图象的一条对称轴方程是()A. B. C. D.8.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=9.已知,,则()A. B. C. D.10.已知向量,,若,则的值为()A. B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.12.在平面直角坐标系中,点,,若直线上存在点使得,则实数的取值范围是_____.13.若等差数列和等比数列满足,,则_______.14.命题“,”是________命题(选填“真”或“假”).15.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.16.若,则______,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱台中,平面ABCD,四边形ABCD为平行四边形,,,,,E为DC中点.(1)求证:平面;(2)求证:;(3)求三棱锥的高.(注:棱台的两底面相似)18.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.19.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.20.已知.(1)求函数的最小正周期及值域;(2)求方程的解.21.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
先化简集合,根据交集与并集的概念,即可得出结果。【题目详解】因为,,所以,.故选A【题目点拨】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.2、C【解题分析】
根据给定的程序框图,逐次循环计算,即可求解,得到答案.【题目详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【题目点拨】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解题分析】
先通过求出两点的斜率,再通过求出倾斜角的值。【题目详解】,选D.【题目点拨】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。4、B【解题分析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【题目详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【题目点拨】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.5、A【解题分析】,向左平移个单位得到函数=,故6、C【解题分析】
直接利用余弦定理得到答案.【题目详解】故答案选C【题目点拨】本题考查了余弦定理,意在考查学生计算能力.7、D【解题分析】
先根据函数的周期求出的值,求出函数的对称轴方程,然后利用赋值法可得出函数图象的一条对称轴方程.【题目详解】由于函数的最小正周期为,则,,令,解得.当时,函数图象的一条对称轴方程为.故选:D.【题目点拨】本题考查利用正弦型函数的周期求参数,同时也考查了正弦型函数图象对称轴方程的计算,解题时要结合正弦函数的基本性质来进行求解,考查运算求解能力,属于中等题.8、D【解题分析】
由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【题目详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【题目点拨】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.9、C【解题分析】
利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【题目详解】,化简得,,则,,因此,,故选C.【题目点拨】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.10、B【解题分析】
直接利用向量的数量积列出方程求解即可.【题目详解】向量,,若,可得2﹣2=0,解得=1,故选B.【题目点拨】本题考查向量的数量积的应用,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).12、.【解题分析】
设由,求出点轨迹方程,可判断其轨迹为圆,点又在直线,转化为直线与圆有公共点,只需圆心到直线的距离小于半径,得到关于的不等式,求解,即可得出结论.【题目详解】设,,,,整理得,又点在直线,直线与圆共公共点,圆心到直线的距离,即.故答案为:.【题目点拨】本题考查求曲线的轨迹方程,考查直线与圆的位置关系,属于中档题.13、【解题分析】
设等差数列的公差为,等比数列的公比为,根据题中条件求出、的值,进而求出和的值,由此可得出的值.【题目详解】设等差数列的公差和等比数列的公比分别为和,则,求得,,那么,故答案为.【考点】等差数列和等比数列【题目点拨】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.14、真【解题分析】当时,成立,即命题“,”为真命题.15、【解题分析】
先由题意得到,根据题意求出的最大值,即可得出结果.【题目详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【题目点拨】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.16、【解题分析】
对极限表达式进行整理,得到,由此作出判断,即可得出参数的值.【题目详解】因为所以,解得:.故答案为:;【题目点拨】本题主要考查由极限值求参数的问题,熟记极限运算法则即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3).【解题分析】
(1)连结,可证四边形为平行四边形,故可证平面;(2)连结BD,在中运用余弦定理可得:,利用勾股定理和线面垂直的性质,可得平面,因此可证;(3)根据题意,不难求,再利用即可求三棱锥的高.【题目详解】(1)证明:连结,因为为四棱台,所以,又因为四边形ABCD为平行四边形,,,所以,又,且,∴四边形为平行四边形,,又平面,平面,平面.(2)证明:连结BD,在中运用余弦定理可得:,∴由勾股定理逆定理得,即.又平面ABCD,,平面,所以.(3)在中,,,,所以,故.由(1)知,由(2)知,,所以.在中,由勾股定理得,在中,由,可得,设O为DB的中点,连结,则,且,又,所以,由勾股定理得,在中,因为,,,所以,即,故,设所求棱锥的高为h,则,所以.【题目点拨】本题考查线面平行、线线垂直的证明,棱锥的高,考查了三棱锥体积计算公式,利用体积转化法求高,属于中等题.18、(1),;(2)【解题分析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.19、(1)(2)或(3)直线RS恒过定点【解题分析】
(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联立可得,由求解即可【题目详解】(1)由题,设点到直线的距离为,则,则弦长,解得,所以圆的标准方程为:(2)当切线斜率不存在时,直线方程为,圆心到直线距离为2,故此时相切;当切线斜率存在时,设切线方程为,即,则,解得,则直线方程为,即,综上,切线方程为或(3)直线RS恒过定点,由题,,则,在以为直径的圆上,设为,则以为直径的圆的方程为:,整理可得,与圆:联立可得:,即,令,解得,故无论取何值时,直线恒过定点【题目点拨】本题考查圆的方程,考查已知圆外一点求切线方程,考查直线恒过定点问题20、(1)最小正周期为,值域为;(2),或,【解题分析】
先用降幂公式,再用辅助角公式将化简成的形式,再求最小正周期,值域与的解.【题目详解】(1)故最小正周期为,又,故,所以值域为.故最小正周期为,值域为.(2)由(1),故得化简得,所以或,.即,或,.故方程的解为:,或,【题目点拨】本题主要考查三角函数公式,一般方法是先将三角函数化简为的形式,再根据题意求解相关内容.21、(1)证明见解析;(2).【解题分析】
(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;
(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【题目详解】解:(1)取BE的中点F.
AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游区游客车辆停放合同3篇
- 安居房施工合同签订3篇
- 教育扶助计划合同3篇
- 插画设计服务协议3篇
- 拦水坝施工条款列表3篇
- 招标文件评审表的制定与评审流程3篇
- 招标第三方评审文件要求3篇
- 方式抵押合同完整范本3篇
- 数据安全技术服务合同模板3篇
- 排水工程招标解析3篇
- 深交所创业板注册制发行上市审核动态(2020-2022)
- 电力系统继电保护试题以及答案(二)
- 燃气有限公司突发环境专项应急预案
- 狼疮性脑病的护理
- 2024版砂石料物流配送服务合同3篇
- 中华人民共和国保守国家秘密法实施条例培训课件
- 中医医术确有专长人员医师资格考核申报资料表
- 2024年中国电信运营商服务合同
- 智慧医学语言基础2024a学习通超星期末考试答案章节答案2024年
- 2024年煤矿主要负责人安全考试题库(浓缩500题)
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
评论
0/150
提交评论