常德市重点中学2024届高一数学第二学期期末质量检测模拟试题含解析_第1页
常德市重点中学2024届高一数学第二学期期末质量检测模拟试题含解析_第2页
常德市重点中学2024届高一数学第二学期期末质量检测模拟试题含解析_第3页
常德市重点中学2024届高一数学第二学期期末质量检测模拟试题含解析_第4页
常德市重点中学2024届高一数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

常德市重点中学2024届高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的对称中心是()A. B. C. D.2.在中,,,,则()A. B.或 C.或 D.3.已知向量,,则()A. B. C. D.4.定义运算为执行如图所示的程序框图输出的值,则式子的值是A.-1 B.C. D.5.在ΔABC中,如果A=45∘,c=6,A.无解 B.一解 C.两解 D.无穷多解6.函数,则命题正确的()A.是周期为1的奇函数 B.是周期为2的偶函数C.是周期为1的非奇非偶函数 D.是周期为2的非奇非偶函数7.直线的倾斜角是()A. B. C. D.8.在中,角A、B、C的对边分别为a、b、c,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形9.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则10.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上的奇函数,当时,,则________.12.某程序框图如图所示,则该程序运行后输出的S的值为________.13.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.14.在锐角△中,角所对应的边分别为,若,则角等于________.15.若,则满足的的取值范围为______________;16.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是角的对边,.(1)求的值;(2)若的面积,,求的值.18.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若,的面积为,求边的长.19.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a20.已知函数(1)求函数的单调递减区间;(2)在锐角中,若角,求的值域.21.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.2、B【解题分析】

利用正弦定理求出,然后利用三角形的内角和定理可求出.【题目详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【题目点拨】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.3、D【解题分析】

根据平面向量的数量积,计算模长即可.【题目详解】因为向量,,则,,故选:D.【题目点拨】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.4、D【解题分析】

由已知的程序框图可知,本程序的功能是:计算并输出分段函数的值,由此计算可得结论.【题目详解】由已知的程序框图可知:本程序的功能是:计算并输出分段函数的值,可得,因为,所以,,故选D.【题目点拨】本题主要考查条件语句以及算法的应用,属于中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.5、C【解题分析】

计算出csinA的值,然后比较a、csin【题目详解】由题意得csinA=6×2【题目点拨】本题考查三角形解的个数的判断,解题时要熟悉三角形解的个数的判断条件,考查分析问题和解决问题的能力,属于中等题.6、B【解题分析】由题得函数的周期为T==2,又f(x)=sin(πx−)−1=−cosπx−1,从而得出函数f(x)为偶函数.故本题正确答案为B.7、D【解题分析】

先求出直线的斜率,再求直线的倾斜角.【题目详解】由题得直线的斜率.故选:D【题目点拨】本题主要考查直线的斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.8、D【解题分析】

由正弦定理化简,得到,由此得到三角形是等腰或直角三角形,得到答案.【题目详解】由题意知,,结合正弦定理,化简可得,所以,则,所以,得或,所以三角形是等腰或直角三角形.故选D.【题目点拨】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.9、A【解题分析】

利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【题目详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【题目点拨】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.10、B【解题分析】

通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【题目详解】,,又,,,又,,故选B.【题目点拨】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据奇偶性,先计算,再计算【题目详解】因为是定义在上的奇函数,所以.因为当时,所以.故答案为【题目点拨】本题考查了奇函数的性质,属于常考题型.12、1【解题分析】

根据程序框图,依次计算运行结果,发现输出的S值周期变化,利用终止运行的条件判断即可求解【题目详解】由程序框图得:S=1,k=1;第一次运行S=1第二次运行S=第三次运行S=1当k=2020,程序运行了2019次,2019=4×504+3,故S的值为1故答案为1【题目点拨】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题13、【解题分析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【题目详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【题目点拨】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.14、【解题分析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.15、【解题分析】

本题首先可确定在区间上所对应的的值,然后可结合正弦函数图像得出不等式的解集.【题目详解】当时,令,解得或,如图,绘出正弦函数图像,结合函数图像可知,当时,的解集为【题目点拨】本题考查三角函数不等式的解法,考查对正弦函数性质的理解,考查计算能力,体现了基础性,是简单题.16、464【解题分析】

根据等比数列求和公式求解【题目详解】由题意得从2019年到2022年各年产值构成以100为首项,1.1为公比的等比数列,其和为【题目点拨】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)【解题分析】

(1)利用两角差的正弦和正弦定理将条件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面积公式求得,结合余弦定理可得,解方程即可得答案.【题目详解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【题目点拨】本题考查两角差的正弦、正弦定理、余弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.18、(1)(2)【解题分析】

(1)利用正弦定理实现边角转化,逆用两角和的正弦公式,进行化简,最后可求出角的大小;(2)利用面积公式结合,可以求出的值,再利用余弦定理可以求出边的长.【题目详解】(1)在中,由正弦定理得,,故,,,代入,并两边同除以,得:,即,因为在中,,所以,故,又由可得,所以,同样由得:.(2)因为的面积为,所以,又由(1)得:,所以,,又,所以,.由余弦定理得:所以.【题目点拨】本题考查了了正弦定理的应用,考查了面积公式,考查了利用余弦定理求边长,考查了数学运算能力.19、(1)-π4【解题分析】

(1)两向量垂直,坐标关系满足x1x2+y1y2=0,由已知可得关于sin【题目详解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【题目点拨】本题考查向量的坐标运算,两向量垂直,求两向量之和的模的最大值,当计算到最大值为3+22时,由平方和公式还可以继续化简,即3+220、(1),;(2)【解题分析】

(1)利用二倍角、辅助角公式化简,然后利用单调区间公式求解单调区间;(2)根据条件求解出的范围,然后再求解的值域.【题目详解】(1),令,解得:,所以单调减区间为:,;(2)由锐角三角形可知:,所以,则,又,所以,,则.【题目点拨】本题考查三角恒等变换以及三角函数值域问题,难度较易.根据三角形形状求解角范围的时候,要注意到隐含条件的使用.21、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解题分析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:(Ⅰ)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论