2024届天成大联考高一数学第二学期期末达标检测模拟试题含解析_第1页
2024届天成大联考高一数学第二学期期末达标检测模拟试题含解析_第2页
2024届天成大联考高一数学第二学期期末达标检测模拟试题含解析_第3页
2024届天成大联考高一数学第二学期期末达标检测模拟试题含解析_第4页
2024届天成大联考高一数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届天成大联考高一数学第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在复平面内,复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知向量若为实数,则=()A.2 B.1 C. D.3.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.24.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x5.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4006.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.7.已知点O是边长为2的正三角形ABC的中心,则()A. B. C. D.8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件9.若,则在中,正数的个数是()A.16 B.72 C.86 D.10010.设函数是定义为R的偶函数,且对任意的,都有且当时,,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设表示不超过的最大整数,则________12.等比数列中首项,公比,则______.13.如图,点为正方形边上异于点的动点,将沿翻折成,使得平面平面,则下列说法中正确的是__________.(填序号)(1)在平面内存在直线与平行;(2)在平面内存在直线与垂直(3)存在点使得直线平面(4)平面内存在直线与平面平行.(5)存在点使得直线平面14.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.15.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.16.在中,角,,所对的边分别为,,,若,则为______三角形.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.18.已知直线和.(1)若,求实数的值;(2)若,求实数的值.19.已知所在平面内一点,满足:的中点为,的中点为,的中点为.设,,如图,试用,表示向量.20.设集合,,求.21.为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;(2)求频率分布直方图中a,b的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用复数的运算法则、几何意义即可得出.【题目详解】在复平面内,复数==1﹣i对应的点(1,﹣1)位于第四象限.故选D.【题目点拨】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2、D【解题分析】

求出向量的坐标,然后根据向量的平行得到所求值.【题目详解】∵,∴.又,∴,解得.故选D.【题目点拨】本题考查向量的运算和向量共线的坐标表示,属于基础题.3、D【解题分析】

因为,所以由于与平行,得,解得.4、D【解题分析】试题分析:三角函数的平移原则为左加右减上加下减.直接求出平移后的函数解析式即可.解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.考点:函数y=Asin(ωx+φ)的图象变换.5、A【解题分析】

根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【题目详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【题目点拨】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.6、A【解题分析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7、B【解题分析】

直接由正三角形的性质求出两向量的模和夹角,由数量积定义计算.【题目详解】∵点O是边长为2的正三角形ABC的中心,∴,,∴.故选:B.【题目点拨】本题考查平面向量的数量积,掌握数量积的定义是解题关键.8、B【解题分析】试题分析:把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不可能同时发生,是互斥事件,但除了事件“甲分得红牌”与“乙分得红牌”还有“丙分得红牌”,所以这两者不是对立事件,答案为B.考点:互斥与对立事件.9、C【解题分析】

令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.10、D【解题分析】∵对于任意的x∈R,都有f(x−2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[−2,0]时,f(x)=−1,且函数f(x)是定义在R上的偶函数,若在区间(−2,6]内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(−2,6]上有三个不同的交点,如下图所示:又f(−2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即<3,且>3,由此解得:<a<2,故答案为(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【题目详解】故答案为:【题目点拨】本题主要考查了三角函数的计算,属于基础题型.12、9【解题分析】

根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【题目详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【题目点拨】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.13、(2)(4)【解题分析】

采用逐一验证法,利用线面的位置关系判断,可得结果.【题目详解】(1)错,若在平面内存在直线与平行,则//平面,可知//,而与相交,故矛盾(2)对,如图作,根据题意可知平面平面所以,作,点在平面,则平面,而平面,所以,故正确(3)错,若平面,则,而所以平面,则,矛盾(4)对,如图延长交于点连接,作//平面,平面,平面,所以//平面,故存在(5)错,若平面,则又,所以平面所以,可知点在以为直径的圆上又该圆与无交点,所以不存在.故答案为:(2)(4)【题目点拨】本题主要考查线线,线面,面面之间的关系,数形结合在此发挥重要作用,属中档题.14、4【解题分析】

根据圆台轴截面等腰梯形计算.【题目详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【题目点拨】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.15、10.【解题分析】

由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【题目详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【题目点拨】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.16、等腰或直角【解题分析】

根据正弦定理化简得到,得到,故或,得到答案.【题目详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【题目点拨】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】

(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【题目详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【题目点拨】本小题主要考查向量数量积运算,考查向量夹角的计算,考查向量模的求法,属于基础题.18、(1);(2).【解题分析】

(1)借助两直线垂直的充要条件建立方程求解;(2)借助两直线平行充要条件建立方程求解.【题目详解】(1)若,则.(2)若,则或2.经检验,时,与重合,时,符合条件,∴.【点晴】解析几何是运用代数的方法和知识解决几何问题一门学科,是数形结合的典范,也是高中数学的重要内容和高考的热点内容.解答本题时充分运用和借助题设条件中的垂直和平行条件,建立了含参数的直线的方程,然后再运用已知条件进行分析求解,从而将问题进行转化和化归,进而使问题获解.如本题的第一问中求参数的值时,是直接运用垂直的充要条件建立方程,这是方程思想的运用;再如第二问中求参数的值时也是运用了两直线平行的条件,但要注意的是这个条件不是两直线平行的充要条件,所以一定代回进行检验,这也是学生经常会出现错误的地方.19、【解题分析】

由为的中点,则可得,为的中点,则可得,从中可以求出向量,得到答案.【题目详解】由为的中点,则可得.又为的中点,所以【题目点拨】本题考查向量的基本定理和向量的加减法的法则,属于中档题.20、【解题分析】

首先求出集合,,再根据集合的运算求出即可.【题目详解】因为的解为(舍去

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论