![甘肃省平凉市静宁一中2024届高一数学第二学期期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M00/3E/33/wKhkGWWeehCAQ3iGAAI3wp4SDRg901.jpg)
![甘肃省平凉市静宁一中2024届高一数学第二学期期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M00/3E/33/wKhkGWWeehCAQ3iGAAI3wp4SDRg9012.jpg)
![甘肃省平凉市静宁一中2024届高一数学第二学期期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M00/3E/33/wKhkGWWeehCAQ3iGAAI3wp4SDRg9013.jpg)
![甘肃省平凉市静宁一中2024届高一数学第二学期期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M00/3E/33/wKhkGWWeehCAQ3iGAAI3wp4SDRg9014.jpg)
![甘肃省平凉市静宁一中2024届高一数学第二学期期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M00/3E/33/wKhkGWWeehCAQ3iGAAI3wp4SDRg9015.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省平凉市静宁一中2024届高一数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知分别为内角的对边,若,b=则=()A. B. C. D.2.已知集合A=-1,A.-1, 0, 13.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交4.已知圆x2+y2+2x-6y+5a=0关于直线y=x+b成轴对称图形,则A.(0,8) B.(-∞,8) C.(-∞,16)5.设全集,集合,,则()A. B.C. D.6.已知集合,,则()A. B. C. D.7.已知甲、乙两组数据用茎叶图表示如图所示,若它们的中位数相同,平均数也相同,则图中的的比值等于A. B. C. D.8.如果直线与平面不垂直,那么在平面内()A.不存在与垂直的直线 B.存在一条与垂直的直线C.存在无数条与垂直的直线 D.任意一条都与垂直9.半径为,中心角为的弧长为()A. B. C. D.10.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列中,,,设,若对任意的正整数,当时,不等式恒成立,则实数的取值范围是______.12.已知均为正数,则的最大值为______________.13.设α为第二象限角,若sinα=3514.函数的最小正周期为__________.15.已知关于的不等式的解集为,则__________.16.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.18.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.19.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于分)和“很满意”(分数不低于分)三个级别.(1)求茎叶图中数据的平均数和的值;(2)从“满意”和“很满意”的人中随机抽取人,求至少有人是“很满意”的概率.20.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;
直线MN的方程.21.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由已知利用正弦定理可求的值,根据余弦定理可得,解方程可得的值.【题目详解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,负值舍去.故选.【题目点拨】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了方程思想,属于基础题.2、B【解题分析】
直接利用交集运算得到答案.【题目详解】因为A=-1, 故答案选B【题目点拨】本题考查了交集运算,属于简单题.3、D【解题分析】
若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.4、D【解题分析】
根据圆关于直线成轴对称图形得b=4,根据二元二次方程表示圆得a<2,再根据指数函数的单调性得4a【题目详解】解:∵圆x2+y∴圆心(-1,3)在直线∴3=-1+b,解得b=4又圆的半径r=4+36-20a2>0b故选:D.【题目点拨】本题考查了直线与圆的位置关系,属中档题.5、A【解题分析】
进行交集、补集的运算即可.【题目详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【题目点拨】考查描述法的定义,以及交集、补集的运算.6、A【解题分析】
先分别求出集合,,由此能求出.【题目详解】集合,,1,,或,,,.故选:.【题目点拨】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7、A【解题分析】
从茎叶图提取甲、乙两组数据中的原始数据,并按从小到大排列,分别得到中位数,并计算各自的平均数,再根据中位数、平均值相等得到关于的方程.【题目详解】甲组数据:,中位数为,乙组数据:,中位数为:,所以,所以,故选A.【题目点拨】本题考查中位数、平均数的概念与计算,对甲组数据排序时,一定是最大,乙组数据中一定是最小.8、C【解题分析】
因为直线l与平面不垂直,必然会有一条直线与其垂直,而所有与该直线平行直线也与其垂直,因此选C9、D【解题分析】
根据弧长公式,即可求得结果.【题目详解】,.故选D.【题目点拨】本题考查了弧长公式,属于基础题型.10、B【解题分析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵,(,),当时,,,…,,并项相加,得:,
∴,又∵当时,也满足上式,
∴数列的通项公式为,∴
,令(),则,∵当时,恒成立,∴在上是增函数,
故当时,,即当时,,对任意的正整数,当时,不等式恒成立,则须使,即对恒成立,即的最小值,可得,∴实数的取值范围为,故答案为.点睛:本题考查数列的通项及前项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题通过并项相加可知当时,进而可得数列的通项公式,裂项、并项相加可知,通过求导可知是增函数,进而问题转化为,由恒成立思想,即可得结论.12、【解题分析】
根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【题目详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【题目点拨】本题考查了重要不等式,把变形为是解题的关键.13、-【解题分析】
先求出cosα,再利用二倍角公式求sin2α【题目详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【题目点拨】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解题分析】
用辅助角公式把函数解析式化成正弦型函数解析式的形式,最后利用正弦型函数的最小正周期的公式求出最小正周期.【题目详解】,函数的最小正周期为.【题目点拨】本题考查了辅助角公式,考查了正弦型函数最小正周期公式,考查了数学运算能力.15、-2【解题分析】为方程两根,因此16、{x|-1<x<-}【解题分析】
观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【题目详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【题目点拨】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.72;(2)【解题分析】
(1)由题意,根据相关系数的公式,可得的值,即可求解;(2)由(1)可知,得投资额关于满意度没有达到较强线性相关,利用公式求得的值,即可得出回归直线的方程.【题目详解】(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,,,,所以,.所以所求线性回归方程为.【题目点拨】本题主要考查了回归分析的应用,同时考查了回归系数的计算,以及回归直线方程的求解,其中解答中利用公式准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2)偶函数,理由见解析.【解题分析】
(1)根据对数的真数大于零可求得和的定义域,取交集可得定义域;(2)整理可得,验证得,得到函数为偶函数.【题目详解】(1)令得:定义域为令得:定义域为的定义域为(2)由题意得:,为定义在上的偶函数【题目点拨】本题考查函数定义域的求解、奇偶性的判断;求解函数定义域的关键是明确对数函数要求真数必须大于零,且需保证构成函数的每个部分都有意义.19、(1)平均数为;(2)【解题分析】
(1)由题意,根据图中个数据的中位数为,由平均数与中位数相同,得平均数为,所以,解得;(2)依题意,人中,“基本满意”有人,“满意”有人,“很满意”有人.“满意”和“很满意”的人共有人.分别记“满意”的人为,,,,“很满意”的人为,,,.从中随机抽取人的一切可能结果所组成的基本事件共个:,,,,,,,,,,,,,,,,,,,,,,,,,,,.用事件表示“人中至少有人是很满意”这一件事,则事件由个基本事件组成:,,,,,,,,,,,,,,,,,,,,,,共有22个.故事件的概率为【题目点拨】本题主要考查了茎叶图的应用,以及古典概型及其概率的计算问题,其中解答中熟记茎叶图的中的平均数和中位数的计算,以及利用列举法得出基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(1);(2).【解题分析】试题分析:(1)边AC的中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为1,同理,B,C两点的纵坐标和的平均数为1.构造方程易得C点的坐标.(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程.解:(1)设点C(x,y),∵边AC的中点M在y轴上得=1,∵边BC的中点N在x轴上得=1,解得x=﹣5,y=﹣2.故所求点C的坐标是(﹣5,﹣2).(2)点M的坐标是(1,﹣),点N的坐标是(1,1),直线MN的方程是=,即5x﹣2y﹣5=1.点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆职业大学《运筹学》2023-2024学年第二学期期末试卷
- 天津广播影视职业学院《制造装备监控与诊断技术》2023-2024学年第二学期期末试卷
- 现代医学下的中医美容理论与实践
- 延长学制申请书
- 中国消防救援学院《软件过程与项目管理》2023-2024学年第二学期期末试卷
- 上海济光职业技术学院《商务策划》2023-2024学年第二学期期末试卷
- 渤海理工职业学院《国际贸易》2023-2024学年第二学期期末试卷
- 电子支付在跨境电商平台的应用及安全保障
- 江苏航空职业技术学院《汉字文化常识》2023-2024学年第二学期期末试卷
- 圆梦大学申请书
- GB 4706.20-2004家用和类似用途电器的安全滚筒式干衣机的特殊要求
- 无纸化会议系统解决方案
- 佛教空性与缘起课件
- 上海铁路局劳动安全“八防”考试题库(含答案)
- 《愿望的实现》教学设计
- 效率提升和品质改善方案
- 中山大学抬头信纸中山大学横式便笺纸推荐信模板a
- 义务教育学科作业设计与管理指南
- 《汽车发展史》PPT课件(PPT 75页)
- 常暗之厢(7规则-简体修正)
- 反诈骗防诈骗主题教育宣传图文PPT教学课件
评论
0/150
提交评论