版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市卢湾高中数学高一下期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,,则()A. B. C. D.2.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.在平面直角坐标系xOy中,直线的倾斜角为()A. B. C. D.4.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切5.sincos+cos20°sin40°的值等于A. B. C. D.6.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.7.已知样本的平均数是10,方差是2,则的值为()A.88 B.96 C.108 D.1108.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移9.等比数列的前项和为,,且成等差数列,则等于()A. B. C. D.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将正偶数按下表排列成列,每行有个偶数的蛇形数列(规律如表中所示),则数字所在的行数与列数分别是_______________.第列第列第列第列第列第行第行第行第行……12.已知角满足,则_____13.已知数列满足:(),设的前项和为,则______;14.在各项均为正数的等比数列中,,,则___________.15.已知向量满足,则16.已知数列满足,,,记数列的前项和为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求下列方程和不等式的解集(1)(2)18.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.19.在中,,点D在边AB上,,且.(1)若的面积为,求CD;(2)设,若,求证:.20.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.21.如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用等差中项的性质得出关于的等式,可解出的值.【题目详解】由等差中项的性质可得,由于,即,即,解得,故选:B.【题目点拨】本题考查等差中项性质的应用,解题时充分利用等差中项的性质进行计算,可简化计算,考查运算能力,属于基础题.2、D【解题分析】
根据线面垂直与平行的性质与判定分析或举出反例即可.【题目详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【题目点拨】本题主要考查了空间中平行垂直的判定与性质,属于中档题.3、B【解题分析】
设直线的倾斜角为,,,可得,解得.【题目详解】设直线的倾斜角为,,.,解得.故选:B.【题目点拨】本题考查直线的倾斜角与斜率之间的关系、三角函数求值,考查推理能力与计算能力,属于基础题.4、B【解题分析】
由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【题目详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【题目点拨】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.5、B【解题分析】由题可得,.故选B.6、B【解题分析】
先由角的终边过点,求出,再由二倍角公式,即可得出结果.【题目详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【题目点拨】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.7、B【解题分析】
根据平均数和方差公式列方程组,得出和的值,再由可求得的值.【题目详解】由于样本的平均数为,则有,得,由于样本的方差为,有,得,即,,因此,,故选B.【题目点拨】本题考查利用平均数与方差公式求参数,解题的关键在于平均数与方差公式的应用,考查计算能力,属于中等题.8、B【解题分析】
先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【题目详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【题目点拨】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.9、A【解题分析】
根据等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得的值.【题目详解】由于成等差数列,故,即,所以,,所以,故选A.【题目点拨】本小题主要考查等差中项的性质,考查等比数列基本量的计算,属于基础题.10、D【解题分析】
根据任意角三角函数定义可求得;根据诱导公式可将所求式子化为,代入求得结果.【题目详解】由得:本题正确选项:【题目点拨】本题考查任意角三角函数值的求解、利用诱导公式化简求值问题;关键是能够通过角的终边上的点求得角的三角函数值.二、填空题:本大题共6小题,每小题5分,共30分。11、行列【解题分析】
设位于第行第列,观察表格中数据的规律,可得出,由此可求出的值,再观察奇数行和偶数行最小数的排列,可得出的值,由此可得出结果.【题目详解】设位于第行第列,由表格中的数据可知,第行最大的数为,则,解得,由于第行最大的数为,所以,是表格中第行最小的数,由表格中的规律可知,奇数行最小的数放在第列,那么.因此,位于表格中第行第列.故答案为:行列.【题目点拨】本题考查归纳推理,解题的关键就是要结合表格中数据所呈现的规律来进行推理,考查推理能力,属于中等题.12、【解题分析】
利用诱导公式以及两角和与差的三角公式,化简求解即可.【题目详解】解:角满足,可得
则.
故答案为:.【题目点拨】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.13、130【解题分析】
先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【题目详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【题目点拨】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.14、8【解题分析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【题目详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【题目点拨】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.15、【解题分析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.16、7500【解题分析】
讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【题目详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【题目点拨】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】
(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【题目详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【题目点拨】本题主要考查解含三角函数的方程,以及反三角函数不等式,熟记三角函数性质,根据函数单调性即可求解,属于常考题型.18、(Ⅰ);(Ⅱ).【解题分析】
(1)根据向量平行的相关性质以及、即可得出向量,然后根据向量的模长公式即可得出结果;(2)首先可根据、写出与的坐标表示,然后根据向量垂直可得,最后通过计算即可得出结果.【题目详解】(1)因为,,所以,,,所以.(2)因为,,所以,.因为与垂直,所以,即,.【题目点拨】本题考查向量平行以及向量垂直的相关性质,考查向量的坐标表示以及向量的模长公式,若、且,则,考查计算能力,是中档题.19、(1)(2)证明见解析【解题分析】
(1)直接利用三角形的面积公式求得,再由余弦定理列方程求出结果;(2)两次利用正弦定理,结合两角差的正弦公式、二倍角的正弦公式进行恒等变换求出结果.【题目详解】(1)因为,即,又因为,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因为,则,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化简得展开并整理得【题目点拨】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)(2)见解析【解题分析】
(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【题目详解】(1)由题意可得,,,且,,当达到第一宇宙速度时,有,;当达到第二宇宙速度时,有,;当达到第三宇宙速度时,有,.(2)因为希望达到,但火箭起飞质量最大值为,,,即,得,的最小值为比较(1)中当达到第三宇宙速度时,;火箭起飞质量为,此时,达到,但火箭起飞质量最大值为,的最小值为.由以上说明实际意义为:不是火箭的推进剂质量越大,火箭达到的速度越大,当减少推进剂质量,增大火箭发动机喷流相对火箭的速度,同样可以达到想要的速度.【题目点拨】本题是一个典型的数学模型的应用问题,用数学的知识解决实际问题,这类题目关键是弄清题意;建立适当的函数模型进行解答.属于中档题.21、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析【解题分析】
(Ⅰ)转化为证明;(Ⅱ)转化为证明,;(Ⅲ)根据线面平行的性质定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度医疗设备研发与应用合同3篇
- 二零二五版私募股权投资基金股权收购合同2篇
- 二零二五版企业股权激励项目执行与改进合同2篇
- 二零二五年度房产投资分期付款合同模板3篇
- 二零二五年蔬菜种子进口合同2篇
- 二零二五年度酒楼市场拓展与股权激励方案合同2篇
- 二零二五年模具生产项目质量保证合同3篇
- 二零二五版智能家居货款担保合同范本3篇
- 二零二五年船舶抵押借款合同范本修订版3篇
- 二零二五年户外活动用安全护栏租赁合同3篇
- 2024年江苏护理职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 分割不动产的协议书(2篇)
- 菏泽2024年山东菏泽市中心血站招聘15人笔试历年典型考点(频考版试卷)附带答案详解版
- 供热通风与空调工程施工企业生产安全事故隐患排查治理体系实施指南
- 精-品解析:广东省深圳市罗湖区2023-2024学年高一上学期期末考试化学试题(解析版)
- 记账实操-基金管理公司的会计处理分录示例
- 中国慢性便秘诊治指南
- 儿童流感诊疗及预防指南(2024医生版)
- 沐足行业严禁黄赌毒承诺书
- 2025年蛇年红色喜庆中国风春节传统节日介绍
- 河北省承德市2023-2024学年高一上学期期末物理试卷(含答案)
评论
0/150
提交评论