2024届辽宁省葫芦岛市八中数学高一下期末教学质量检测试题含解析_第1页
2024届辽宁省葫芦岛市八中数学高一下期末教学质量检测试题含解析_第2页
2024届辽宁省葫芦岛市八中数学高一下期末教学质量检测试题含解析_第3页
2024届辽宁省葫芦岛市八中数学高一下期末教学质量检测试题含解析_第4页
2024届辽宁省葫芦岛市八中数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省葫芦岛市八中数学高一下期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.2.记复数的虚部为,已知满足,则为()A. B. C.2 D.3.已知tan(α+π5A.1B.-57C.4.已知,则().A. B. C. D.5.已知,则下列不等式成立的是()A. B. C. D.6.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.7.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.8.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面9.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.10.一组数据中的每一个数据都乘以3,再减去30,得到一组新数据,若求得新数据的平均数是3.6,方差是9.9,则原来数据的平均数和方差分别是()A.11.2,1.1 B.33.6,9.9 C.11.2,9.9 D.24.1,1.1二、填空题:本大题共6小题,每小题5分,共30分。11.某企业利用随机数表对生产的800个零件进行抽样测试,先将800个零件进行编号,编号分别为001,002,003,…,800从中抽取20个样本,如下提供随机数表的第行到第行:若从表中第6行第6列开始向右依次读取个数据,则得到的第个样本编号是_______.12.已知,且是第一象限角,则的值为__________.13.在中,若,则____________.14.如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高__________.15.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.16.若数据的平均数为,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.18.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S19.已知数列的前项和为,点在直线上.数列满足且,前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求及使不等式对一切都成立的最小正整数的值;(3)设,问是否存在,使得成立?若不存在,请说明理由.20.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.21.已知向量,.函数的图象关于直线对称,且.(1)求函数的表达式:(2)求函数在区间上的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【题目详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【题目点拨】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.2、A【解题分析】

根据复数除法运算求得,从而可得虚部.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.3、D【解题分析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=4、A【解题分析】

.所以选A.【题目点拨】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题.5、B【解题分析】

利用不等式的基本性质即可得出结果.【题目详解】因为,所以,所以,故选B【题目点拨】本题主要考查不等式的基本性质,属于基础题型.6、A【解题分析】

若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质7、D【解题分析】

本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【题目详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【题目点拨】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.8、D【解题分析】

当时与相交,当时与异面.【题目详解】当时与相交,当时与异面.故答案为D【题目点拨】本题考查了直线的位置关系,属于基础题型.9、D【解题分析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选10、A【解题分析】

根据新数据所得的均值与方差,结合数据分析中的公式,即可求得原来数据的平均数和方差.【题目详解】设原数据为则新数据为所以由题意可知,则,解得,故选:A.【题目点拨】本题考查了数据处理与简单应用,平均数与方差公式的简单应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】

根据随机数表法抽样的定义进行抽取即可.【题目详解】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,1合适则满足条件的6个编号为436,535,577,348,522,1,则第6个编号为1,故答案为1.【题目点拨】本题考查了简单随机抽样中的随机数表法,主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.本题属于基础题.12、;【解题分析】

利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【题目详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【题目点拨】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.13、2【解题分析】

根据正弦定理角化边可得答案.【题目详解】由正弦定理可得.故答案为:2【题目点拨】本题考查了正弦定理角化边,属于基础题.14、1【解题分析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案为1.考点:正弦定理的应用.15、【解题分析】

由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【题目详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【题目点拨】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.16、【解题分析】

根据求平均数的公式,得到关于的方程,求得.【题目详解】由题意得:,解得:,故填:.【题目点拨】本题考查求一组数据的平均数,考查基本数据处理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【题目详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【题目点拨】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.18、(1)证明见解析;(2)S【解题分析】

(1)计算得到bn+1bn(2)根据(1)知an【题目详解】(1)因为bn+1b所以数列bn(2)因为bn=aSn【题目点拨】本题考查了等比数列的证明,分组求和,意在考查学生的计算能力和对于数列方法的灵活运用.19、(1);(2)1009;(3)m=11.【解题分析】

(1)运用数列的通项公式和前n项和的关系,即可得到数列的通项公式;运用等差数列的通项和求和公式,求出公差,即可得到数列的通项公式;(2)化简,运用裂项相消法求和,求出数列的前n项和为,再由数列的单调性,即可得出k的最小值;(3)分m为奇数和m为偶数,分别利用条件,求出m的值,可得结论.【题目详解】(1)(2)(3)当为奇数时,当为偶数时,.【题目点拨】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,数列的项与和的关系,裂项相消法求和,应用题的条件,得到相应的结果.20、(1);(2).【解题分析】

(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【题目详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【题目点拨】本题考查正弦型函数的最小正周期、三角形面积的求解,涉及到正弦定理、余弦定理、三角形面积公式、两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论