2024届贵州省毕节大方县德育中学高一数学第二学期期末调研试题含解析_第1页
2024届贵州省毕节大方县德育中学高一数学第二学期期末调研试题含解析_第2页
2024届贵州省毕节大方县德育中学高一数学第二学期期末调研试题含解析_第3页
2024届贵州省毕节大方县德育中学高一数学第二学期期末调研试题含解析_第4页
2024届贵州省毕节大方县德育中学高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省毕节大方县德育中学高一数学第二学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列中,,该数列的公比为A.2 B.-2 C. D.32.用数学归纳法证明不等式的过程中,由递推到时,不等式左边()A.增加了一项B.增加了两项,C.增加了A中的一项,但又减少了另一项D.增加了B中的两项,但又减少了另一项3.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.4.“”是“函数的图像关于直线对称”的()条件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要5.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2 B.3 C.4 D.86.设直线系.下列四个命题中不正确的是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等7.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.8.已知底面半径为1,体积为的圆柱,内接于一个高为圆锥(如图),线段AB为圆锥底面的一条直径,则从点A绕圆锥的侧面到点B的最短距离为()A.8 B. C. D.49.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.1510.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,且对于任意的,都有,则___;数列前10项的和____.12.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.13.已知实数满足则的最小值为__________.14.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101315.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.16.在三棱锥中,,,,作交于,则与平面所成角的正弦值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.18.如图是某地某公司名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在元到元之间的人数;(2)该公司员工的月平均收入.19.在中,内角所对的边分别是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.20.如图所示,函数的图象与轴交于点,且该函数的最小正周期为.(1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当时,求的值.21.某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:1234546102322(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).参考公式与参考数据:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】分析:根据等比数列通项公式求公比.详解:因为,所以选B.点睛:本题考查等比数列通项公式,考查基本求解能力.2、D【解题分析】

根据题意,分别写出和时,左边对应的式子,进而可得出结果.【题目详解】当时,左边,当时,左边,所以,由递推到时,不等式左边增加了,;减少了;故选:D【题目点拨】本题主要考查数学归纳法的应用,熟记数学归纳法,会求增量即可,属于基础题型.3、B【解题分析】

根据题意,得到数列为等差数列,通过首项和公差,得到通项.【题目详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【题目点拨】本题考查求等差数列的通项,属于简单题.4、A【解题分析】

根据充分必要条件的判定,即可得出结果.【题目详解】当时,是函数的对称轴,所以“”是“函数的图像关于直线对称”的充分条件,当函数的图像关于直线对称时,,推不出,所以“”是“函数的图像关于直线对称”的不必要条件,综上选.【题目点拨】本题主要考查了充分条件、必要条件,余弦函数的对称轴,属于中档题.5、A【解题分析】,选A.6、D【解题分析】

对于含变量的直线问题可采用赋特殊值法进行求解【题目详解】因为所以点到中每条直线的距离即为圆的全体切线组成的集合,所以存在圆心在,半径大于1的圆与中所有直线相交,A正确也存在圆心在,半径小于1的圆与中所有直线均不相交,B正确也存在圆心在半径等于1的圆与中所有直线相切,C正确故正确因为中的直线与以为圆心,半径为1的圆相切,所以中的直线所能围成的正三角形面积不都相等,如图

均为等边三角形而面积不等,故错误,答案选D.【题目点拨】本题从点到直线的距离关系出发,考查了圆的切线与圆的位置关系,解决此类题型应学会将条件进行有效转化.7、C【解题分析】

根据三角函数定义结合正弦的二倍角公式计算即可【题目详解】由题意,∴,,.故选:C.【题目点拨】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.8、C【解题分析】

先求解圆锥的底面半径,再根据侧面展开图的结构计算扇形中间的距离即可.【题目详解】设圆柱的高为,则,得.因为,所以为的中位线,所以,则.即圆锥的底面半径为1,母线长为4,则展开后所得扇形的弧长为,圆心角为.所以从点A绕圆锥的侧面到点B的最短距离为.故选:C.【题目点拨】本题主要考查了圆柱与圆锥内切求解有关量的问题以及圆锥的侧面积展开求距离最小值的问题.属于中档题.9、C【解题分析】

根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【题目详解】设阴影部分的面积是s,由题意得4001000【题目点拨】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.10、B【解题分析】

由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【题目详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【题目点拨】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解题分析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项12、16【解题分析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;‚分层抽样。13、【解题分析】

本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【题目详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【题目点拨】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。14、21.2【解题分析】

计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【题目详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【题目点拨】本题主要考查回归方程的相关计算,难度很小.15、【解题分析】

正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【题目详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【题目点拨】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.16、【解题分析】

取中点,中点,易得面,再求出到平面的距离,进而求解再得出到平面的距离.从而算得与平面所成角的正弦值即可.【题目详解】如图,取中点,中点,连接.因为,,所以.因为,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距离.到面的距离.又因为,所以,所以,所以,故到面的距离.故与平面所成角的正弦值是故答案为:【题目点拨】本题主要考查了空间中线面垂直的性质与运用,同时也考查了余弦定理在三角形中求线段与角度正余弦值的方法,需要根据题意找到点到面的距离求解,再求出线面的夹角.属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解题分析】

(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【题目详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【题目点拨】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.18、(1);(2).【解题分析】

(1)根据频率分布直方图得出该公司月收入在元到元的员工所占的频率,再乘以可得出所求结果;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得的积全部相加可得出该公司员工月收入的平均数.【题目详解】(1)根据频率分布直方图知,该公司月收入在元到元的员工所占的频率为:,因此,该公司月收入在元到元之间的人数为;(2)据题意该公司员工的平均收入为:(元).【题目点拨】本题考查频率分布直方图的应用,考查频数的计算以及平均数的计算,解题时要注意频数、平均数的计算原则,考查计算能力,属于基础题.19、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)先利用向量垂直的坐标表示,得到,再利用正弦定理以及两角和的正弦公式将,化为,进而得到,由此能求出.(Ⅱ)将两边平方,推导出,当且仅当,时取等号,由此求出面积的最大值.【题目详解】解析:(Ⅰ)由得,则得,即由于,得,又A为内角,因此.(Ⅱ)将两边平方,即所以,当且仅当,时取等号.此时,其最大值为.【题目点拨】本题主要考查数量积的坐标表示及运算、两角和的正弦公式应用、三角形面积公式的应用以及利用基本不等式求最值.20、(1)..(2),或.【解题分析】试题分析:(1)由三角函数图象与轴交于点可得,则.由最小正周期公式可得.(2)由题意结合中点坐标公式可得点的坐标为.代入三角函数式可得,结合角的范围求解三角方程可得,或.试题解析:(1)将代入函数中,得,因为,所以.由已知,且,得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论