湖南省岳阳市岳阳县第一中学2024届高一数学第二学期期末监测试题含解析_第1页
湖南省岳阳市岳阳县第一中学2024届高一数学第二学期期末监测试题含解析_第2页
湖南省岳阳市岳阳县第一中学2024届高一数学第二学期期末监测试题含解析_第3页
湖南省岳阳市岳阳县第一中学2024届高一数学第二学期期末监测试题含解析_第4页
湖南省岳阳市岳阳县第一中学2024届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳市岳阳县第一中学2024届高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.12.一张方桌的图案如图所示,将一颗豆子随机地扔到桌面上,假设豆子不落在线上,下列事件的概率:(1)豆子落在红色区域概率为;(2)豆子落在黄色区域概率为;(3)豆子落在绿色区域概率为;(4)豆子落在红色或绿色区域概率为;(5)豆子落在黄色或绿色区域概率为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个3.已知向量,满足:则A. B. C. D.4.已知数列,对于任意的正整数,,设表示数列的前项和.下列关于的结论,正确的是()A. B.C. D.以上结论都不对5.的内角的对边分别为,面积为,若,则外接圆的半径为()A. B. C. D.6.若某扇形的弧长为,圆心角为,则该扇形的半径是()A. B. C. D.7.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.8.设m>1,在约束条件y≥xA.1,1+2C.(1,3) D.(3,+∞)9.在中,内角,,的对边分别为,,.若,则的形状是A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定10.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,,,则数列的通项公式______.12.已知当时,函数(且)取得最大值,则时,的值为__________.13.已知数列的通项公式,则_______.14.已知函数fx=Asin15.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.16.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中0为原点。(1)求证:的面积为定值;(2)设直线与圆C交于点M,N,若,求圆C的方程.18.已知,且为第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.19.已知的三个内角的对边分别为,且,(1)求证:;(2)若是锐角三角形,求的取值范围.20.已知函数.(1)求函数f(x)的最小值及f(x)取到最小值时自变量x的集合;(2)指出函数y=f(x)的图象可以由函数y=sinx的图象经过哪些变换得到;21.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

求出阴影部分的面积,然后与圆面积作比值即得.【题目详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【题目点拨】本题考查几何概型,属于基础题.2、B【解题分析】试题分析:方桌共有块,其中红色的由块,黄色的由块,,绿色的由块,所以(1)(2)(3)结论正确,故选择B.这里表面上看是与面积相关的几何概型,其实还是古典概型考点:古典概型的概率计算和事件间的关系.3、D【解题分析】

利用向量的数量积运算及向量的模运算即可求出.【题目详解】∵||=3,||=2,|+|=4,∴|+|2=||2+||2+2=16,∴2=3,∴|﹣|2=||2+||2﹣2=9+4﹣3=10,∴|﹣|=,故选D.【题目点拨】本题考查了向量的数量积运算和向量模的计算,属于基础题.4、B【解题分析】

根据题意,结合等比数列的求和公式,先得到当时,,再由极限的运算法则,即可得出结果.【题目详解】因为数列,对于任意的正整数,,表示数列的前项和,所以,,,...…,所以当时,,因此.故选:B【题目点拨】本题主要考查数列的极限,熟记等比数列的求和公式,以及极限的运算法则即可,属于常考题型.5、A【解题分析】

出现面积,可转化为观察,和余弦定理很相似,但是有差别,差别就是条件是形式,而余弦定理中是形式,但是我们可以注意到:,所以可以完成本题.【题目详解】由,所以在三角形中,再由正弦定理所以答案选择A.【题目点拨】本题很灵活,在常数4的处理问题上有点巧妙,然后再借助余弦定理及正弦定理,难度较大.6、D【解题分析】

由扇形的弧长公式列方程得解.【题目详解】设扇形的半径是,由扇形的弧长公式得:,解得:故选D【题目点拨】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题.7、A【解题分析】所求的全面积之比为:,故选A.8、A【解题分析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.9、C【解题分析】

由正弦定理可推得,再由余弦定理计算最大边的余弦值即可判断三角形形状.【题目详解】因为,所以,设,,,则角为的最大角,由余弦定理可得,即,故是钝角三角形.【题目点拨】本题考查用正弦定理和余弦定理解三角形,属于基础题.10、A【解题分析】

根据求解.【题目详解】由题得.故选:A【题目点拨】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题意得出,利用累加法可求出.【题目详解】数列满足,,,,因此,.故答案为:.【题目点拨】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.12、3【解题分析】

先将函数的解析式利用降幂公式化为,再利用辅助角公式化为,其中,由题意可知与的关系,结合诱导公式以及求出的值.【题目详解】,其中,当时,函数取得最大值,则,,所以,,解得,故答案为.【题目点拨】本题考查三角函数最值,解题时首先应该利用降幂公式、和差角公式进行化简,再利用辅助角公式化简为的形式,本题中用到了与之间的关系,结合诱导公式进行求解,考查计算能力,属于中等题.13、【解题分析】

本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【题目详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【题目点拨】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.14、f【解题分析】分析:首先根据函数图象得函数的最大值为2,得到A=2,然后算出函数的周期T=π,利用周期的公式,得到ω=2,最后将点(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f详解:根据函数图象得函数的最大值为2,得A=2,又∵函数的周期34T=5π将点(5π12,2)代入,得:2=2sin所以fx的解析式是f点睛:本题给出了函数y=Asin(ωx+φ)的部分图象,要确定其解析式,着重考查了三角函数基本概念和函数y=Asin(ωx+φ)的图象与性质的知识点,属于中档题.15、【解题分析】

利用来求的通项.【题目详解】,化简得到,填.【题目点拨】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.16、【解题分析】

根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【题目详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【题目点拨】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)或【解题分析】

(1)先计算半径,得到圆方程,再计算AB坐标,计算的面积得到答案.(2)根据计算得到答案.【题目详解】(1),过原点取取为定值.(2)设直线与圆C交于点M,N,若设中点为,连接圆心在上圆C的方程为:或【题目点拨】本题考查了三角形面积,直线和圆的位置关系,意在考查学生的计算能力.18、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由已知利用同角三角函数基本关系式可求,利用诱导公式,二倍角公式即可计算得解;(Ⅱ)由已知利用二倍角的余弦函数公式可求cos2α的值,根据同角三角函数基本关系式可求tan2α的值,根据两角和的正切函数公式即可计算得解.【题目详解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【题目点拨】本题主要考查了同角三角函数基本关系式,诱导公式,二倍角公式,两角和的正切函数公式在三角函数化简求值中的综合应用,考查了计算能力和转化思想,属于基础题.19、(1)证明见解析;(2)【解题分析】

(1)由,联立,得,然后边角转化,利用和差公式化简,即可得到本题答案;(2)利用正弦定理和,得,再确定角C的范围,即可得到本题答案.【题目详解】解:(1)锐角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均为锐角,由于:,,.再根据,可得,,【题目点拨】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.20、(1),此时自变量的集合是(2)见解析【解题分析】

(1)根据三角函数的性质,即可求解;(2)根据三角函数的图形变换规律,即可得到。【题目详解】(1),此时,,即,,即此时自变量的集合是.(2)把函数的图象向右平移个单位长度,得到函数的图象,再把函数的图象上所有点的纵坐标不变,横坐标变为原来的,得到函数的图象,最后再把函数的图象上所有点的横坐标不变,纵坐标变为原来的2倍,得到函数的图象.【题目点拨】本题主要考查正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论