版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省荆州市成丰学校高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方形的边长为,若将正方形沿对角线折叠为三棱锥,则在折叠过程中,不能出现()A. B.平面平面 C. D.2.已知球的直径SC=4,A,B是该球球面上的两点,AB=1.∠ASC=∠BSC=45°则棱锥S—ABC的体积为()A. B. C. D.3.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”4.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=05.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”6.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③7.已知向量,,则与夹角的大小为()A. B. C. D.8.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值9.函数的图象沿轴向左平移个单位长度后得到函数的图象的一个对称中心是()A. B. C. D.10.在中,,,,则的面积是()A. B. C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.12.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.13.设等比数列的前项和为,若,,则的值为______.14.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).15.在锐角中,内角A,B,C所对的边分别为a,b,c,若的面积为,且,则的周长的取值范围是________.16.已知函数,则函数的最小值是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.18.已知集合.(Ⅰ)求;(Ⅱ)若集合,写出集合的所有子集.19.已知点是重心,.(1)用和表示;(2)用和表示.20.(1)计算(2)已知,求的值21.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】对于A:取BD中点O,因为,AO所以面AOC,所以,故A对;对于B:当沿对角线折叠成直二面角时,有面平面平面,故B对;对于C:当折叠所成的二面角时,顶点A到底面BCD的距离为,此时,故C对;对于D:若,因为,面ABC,所以,而,即直角边长与斜边长相等,显然不对;故D错;故选D点睛:本题考查了立体几何中折叠问题,要分析清楚折叠前后的变化量与不变量以及线线与线面的位置关系,属于中档题.2、C【解题分析】如图所示,由题意知,在棱锥SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中点D,易证SC垂直于面ABD,因此棱锥SABC的体积为两个棱锥SABD和CABD的体积和,所以棱锥SABC的体积V=SC·S△ADB=×4×=.3、A【解题分析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【题目详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【题目点拨】本题考查了互斥事件的定义.是基础题.4、D【解题分析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【题目详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.5、C【解题分析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.6、D【解题分析】
由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【题目详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【题目点拨】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.7、D【解题分析】
根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【题目详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【题目点拨】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.8、C【解题分析】
根据等差数列的性质,结合,,分析出错误结论.【题目详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【题目点拨】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.9、B【解题分析】
先求出变换后的函数的解析式,求出所得函数的对称中心坐标,可得出正确选项.【题目详解】函数的图象沿轴向左平移个单位长度后得到函数的解析式为,令,得,因此,所得函数的图象的一个对称中心是,故选B.【题目点拨】本题考查图象的变换以及三角函数的对称中心,解题的关键就是求出变换后的三角函数解析式,考查分析问题和解决问题的能力,属于中等题.10、C【解题分析】
先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【题目详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【题目点拨】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】
根据程序框图依次计算出、、后即可得解.【题目详解】由程序框图可知,;,;,.所以.故答案为:.【题目点拨】本题考查了程序框图的应用,属于基础题.12、③④【解题分析】
①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【题目详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【题目点拨】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.13、16【解题分析】
利用及可计算,从而可计算的值.【题目详解】因为,故,因为,故,故,故填16.【题目点拨】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.14、45【解题分析】
直接利用对数的运算性质计算即可,【题目详解】.故答案为:45.【题目点拨】本题考查对数的运算性质,考查计算能力,属于基础题.15、【解题分析】
通过观察的面积的式子很容易和余弦定理联系起来,所以,求出,所以.再由正弦定理即可将的范围通过辅助角公式化简利用三角函数求出范围即可.【题目详解】因为的面积为,所以,所以.由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【题目点拨】此题考察解三角形,熟悉正余弦定理,然后一般求范围的题目转化为求解三角函数值域即可,易错点注意转化后角的范围区间,属于中档题目.16、5【解题分析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析,(3),证明见解析(4)【解题分析】
(1)右边余切化正切后,利用二倍角的正切公式变形可证;(2)将(1)的结果变形为,然后将所证等式的右边的正切化为余切即可得证;(3)根据(1)(2)的规律可得结果;(4)由(3)的结果可得.【题目详解】(1)证明:因为,所以(2)因为,所以,所以(3)一般地:,证明:因为所以,以此类推得(4).【题目点拨】本题考查了归纳推理,考查了同角公式,考查了二倍角的正切公式,属于中档题.18、(Ⅰ)(Ⅱ).【解题分析】
(Ⅰ)求解二次不等式从而求得集合A,利用指数函数的图像求出集合B,再进行并集运算即可;(Ⅱ)依次求出,,即可写出集合C的子集.【题目详解】(Ⅰ)由,得,即有,于是.作出函数的图象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【题目点拨】本题考查集合的基本运算,集合的子集,属于基础题.19、(1)(2).【解题分析】
(1)设的中点为,可得出,利用重心性质得出,由此可得出关于、的表达式;(2)由,得出,再由,可得出关于、的表达式.【题目详解】(1)设的中点为,则,,为的重心,因此,;(2),,因此,.【题目点拨】本题考查利基底表示向量,应充分利用平面几何中一些性质,将问题中所涉及的向量利用基底表示,并结合平面向量的线性运算法则进行计算,考查分析问题和解决问题的能力,属于中等题.20、(1)1+;(2).【解题分析】
(1)利用对数的运算法则计算得解;(2)先化简已知得,再把它代入化简的式子即得解.【题目详解】(1)原式=1+;(2)由题得,所以.【题目点拨】本题主要考查对数的运算,考查诱导公式化简求值和同角的三角函数关系,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1)(2)的最大值为,此时【解题分析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程验收合同样式
- 安徽省特产市场租房协议
- 影视制作经销商合同
- 智能化施工合同建筑工程高效管理
- 酒店开业庆典致辞5篇
- 医院噪声污染防治管理规定
- 2024工程机械租赁合同
- 教学楼照明系统升级合同模板
- 旅游度假区开发考核办法
- 客运站新司机招聘合同模板
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 品牌经理招聘笔试题及解答(某大型国企)2025年
- 多能互补规划
- 珍爱生命主题班会
- 《网络数据安全管理条例》课件
- 消除“艾梅乙”医疗歧视-从我做起
- 八年级历史上册(部编版)第六单元中华民族的抗日战争(大单元教学设计)
- 公司研发项目审核管理制度
- 《诗意的色彩》课件 2024-2025学年人美版(2024)初中美术七年级上册
- 小学生主题班会《追梦奥运+做大家少年》(课件)
- 《抖音运营》课件-1.短视频与抖音认知基础
评论
0/150
提交评论