![2024届天津市河西区新华中学高一数学第二学期期末监测试题含解析_第1页](http://file4.renrendoc.com/view11/M00/2D/36/wKhkGWWexROAD0-eAAIIt8lWTcE099.jpg)
![2024届天津市河西区新华中学高一数学第二学期期末监测试题含解析_第2页](http://file4.renrendoc.com/view11/M00/2D/36/wKhkGWWexROAD0-eAAIIt8lWTcE0992.jpg)
![2024届天津市河西区新华中学高一数学第二学期期末监测试题含解析_第3页](http://file4.renrendoc.com/view11/M00/2D/36/wKhkGWWexROAD0-eAAIIt8lWTcE0993.jpg)
![2024届天津市河西区新华中学高一数学第二学期期末监测试题含解析_第4页](http://file4.renrendoc.com/view11/M00/2D/36/wKhkGWWexROAD0-eAAIIt8lWTcE0994.jpg)
![2024届天津市河西区新华中学高一数学第二学期期末监测试题含解析_第5页](http://file4.renrendoc.com/view11/M00/2D/36/wKhkGWWexROAD0-eAAIIt8lWTcE0995.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市河西区新华中学高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,若,则()A.2 B. C. D.2.设是两条不同的直线,是两个不同的平面,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则3.小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为()A. B. C. D.4.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.5.若关于x,y的方程组无解,则()A. B. C.2 D.6.若向量满足:与的夹角为,且,则的最小值是()A.1 B. C. D.27.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件8.下列结论正确的是()A. B.若,则C.当且时, D.9.已知等比数列中,,该数列的公比为A.2 B.-2 C. D.310.设,则有()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,,则数列的通项公式______.12.已知直线与,当时,实数_______;当时,实数_______.13.用秦九韶算法求多项式当时的值的过程中:,__.14.在中,角的对边分别为,若面积,则角__________.15.若满足约束条件,的最小值为,则________.16.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(xR)是单函数;②若为单函数,且则;③若f:AB为单函数,则对于任意bB,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.18.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.19.如图1所示,在四边形中,,且,,.(1)求的面积;(2)若,求的长.图1图220.已知的三个顶点,,.(1)求边所在直线的方程;(2)求边上中线所在直线的方程.21.已知函数,其中常数;(1)令,判定函数的奇偶性,并说明理由;(2)令,将函数图像向右平移个单位,再向上平移1个单位,得到函数的图像,对任意,求在区间上零点个数的所有可能值;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.2、D【解题分析】
对于A,利用线面平行的判定可得A正确.对于B,利用线面垂直的性质可得B正确.对于C,利用面面垂直的判定可得C正确.根据平面与平面的位置关系即可判断D不正确.【题目详解】对于A,根据平面外的一条直线与平面内的一条直线平行,则这条直线平行于这个平面,可判定A正确.对于B,根据垂直于同一个平面的两条直线平行,判定B正确.对于C,根据一个平面过另一个平面的垂线,则这两个平面垂直,可判定C正确.对于D,若,则或相交,所以D不正确.故选:D【题目点拨】本题主要考查了线面平行和面面垂直的判定,同时考查了线面垂直的性质,属于中档题.3、B【解题分析】
假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【题目详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.设,得,对比得,,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故选:B.【题目点拨】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.4、C【解题分析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【题目详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【题目点拨】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.5、A【解题分析】
由题可知直线与平行,再根据平行公式求解即可.【题目详解】由题,直线与平行,故.故选:A【题目点拨】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.6、D【解题分析】
设作图,由可知点在以线段为直径的圆上,由图可知,,代入所求不等式利用圆的特征化简即可.【题目详解】如图,设,取线段的中点为,连接OE交圆于点D,因为即,所以点在以线段为直径的圆上(E为圆心),且,于是.故选:D【题目点拨】本题考查向量的线性运算,垂直向量的数量积表示,几何图形在向量运算中的应用,属于中档题.7、A【解题分析】
余弦函数在上单调递减【题目详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【题目点拨】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。8、D【解题分析】
利用不等式的性质进行分析,对错误的命题可以举反例说明.【题目详解】当时,A不正确;,则,B错误;当时,,,C错误;由不等式的性质正确.故选:D.【题目点拨】本题考查不等式的性质,掌握不等式性质是解题关键.可通过反例说明命题错误.9、B【解题分析】分析:根据等比数列通项公式求公比.详解:因为,所以选B.点睛:本题考查等比数列通项公式,考查基本求解能力.10、A【解题分析】
根据题意,利用辅助角公式得,对于,根据同角三角函数的基本关系和二倍角公式对进行处理,即可得到;对于,利用二倍角公式对变形处理可以得到,再根据正弦函数的单调性即可比较大小.【题目详解】由题意得因为正弦函数在上为增函数,所以,选A.【题目点拨】本题是一道关于三角函数值大小比较的题目,解答本题的关键是掌握三角函数公式;二倍角公式、辅助角公式、同角三角函数的基本关系等.属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【题目详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【题目点拨】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.12、【解题分析】
根据两直线垂直和平行的充要条件,得到关于的方程,解方程即可得答案.【题目详解】当时,,解得:;当时,且,解得:.故答案为:;.【题目点拨】本题考查两直线垂直和平行的充要条件,考查逻辑推理能力和运算求解能力,属于基础题.13、1【解题分析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【题目详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【题目点拨】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.14、【解题分析】
根据面积公式计算出的值,然后利用反三角函数求解出的值.【题目详解】因为,所以,则,则有:.【题目点拨】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.15、4【解题分析】
由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【题目详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【题目点拨】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.16、②③【解题分析】
命题①:对于函数,设,故和可能相等,也可能互为相反数,即命题①错误;命题②:假设,因为函为单函数,所以,与已知矛盾,故,即命题②正确;命题③:若为单函数,则对于任意,,假设不只有一个原象与其对应,设为,则,根据单函数定义,,又因为原象中元素不重复,故函数至多有一个原象,即命题③正确;命题④:函数在某区间上具有单调性,并不意味着在整个定义域上具有单调性,即命题④错误,综上可知,真命题为②③.故答案为②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4【解题分析】
(1)由,得,由,得A,b,代入,求得,从而即可得到本题答案;(2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.【题目详解】(1)解:由图知,又,可得,代入,得,又,所求为(2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:同理,企业甲用电负荷量变化关系式为:两企业用电负荷量之和,依题意,有恒成立即恒成立展开有恒成立其中,,,整理得:解得即取得:的最小值为4.【题目点拨】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.18、(1),;(2)减区间为,对称轴方程为【解题分析】
(1)先根据平移后周期不变求得,再根据三角函数的平移方法求得即可.(2)根据(1)中,代入可得,利用辅助角公式求得,再代入调递减区间及图象的对称轴方程求解即可.【题目详解】(1)因为函数的图象向左平移个单位长度后与函数图象重合,所以.所以,因为,所以.(2)由(1),,所以,.令,解得所以函数的单调递减区间为.令,可得图象的对称轴方程为.【题目点拨】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.19、(1);(2).【解题分析】
(1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;
(2)利用余弦定理求出AC,通过,利用余弦定理求解AB的长.【题目详解】(1)因为,,所以,又,所以,所以.(2)由余弦定理可得,因为,所以,解得.【题目点拨】本题考查余弦定理以及正弦定理的应用,基本知识的考查,考查学生分析解决问题的能力,属于中档题.20、(1)(2)【解题分析】
(1)由直线的两点式方程求解即可;(2)先由中点坐标公式求出中点的坐标,再结合直线的两点式方程求解即可.【题目详解】(1)因为,,由直线的两点式方程可得:边所在直线的方程,化简可得;(2)由,,则中点,即,则边上中线所在直线的方程为,化简可得.【题目点拨】本题考查了中点坐标公式,重点考查了直线的两点式方程,属基础题.21、(1)非奇非偶,理由见解析;(2)21或20个.【解题分析】
(1)先利用辅助角公式化简,再利用和可判断为非奇非偶函数.(2)求出的解析式后结合函数的图像、周期及给定区间的特点可判断在给定的范围上的零点的个数.【题目详解】(1),则,故不是奇函数,又,,故不是偶函数.综上,为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新员工入职合同下载
- 2025广告发布委托合同书版范本
- 全新房地产买卖合同范文下载
- 公司业务担保合同
- 单位货物采购合同格式
- 幼儿园股份合伙经营合作合同书
- 2024年中考物理(安徽卷)真题详细解读及评析
- 地板砖购销合同模板
- 拓宽知识面的重要性主题班会
- 2025如果合同标的不合格怎么办反担保
- 商标法基础知识
- 2025年高考物理一轮复习之机械振动
- 2024年度市政工程项目三方合作协议3篇
- (2024)甘肃省公务员考试《行测》真题及答案解析
- 医院医务人员医德考评标准
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- 癫痫病人的护理(课件)
- 2024年WPS计算机二级考试题库350题(含答案)
- 2024年6月浙江省高考地理试卷真题(含答案逐题解析)
- 医院培训课件:《如何撰写护理科研标书》
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
评论
0/150
提交评论