版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区赤峰市第二中学2024届数学高一下期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.2.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.3.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.214.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则5.下列命题中正确的是()A. B.C. D.6.已知向量,,则与的夹角为()A. B. C. D.7.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.8.在中,若,则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形9.如图,各棱长均为的正三棱柱,、分别为线段、上的动点,且平面,,中点轨迹长度为,则正三棱柱的体积为()A. B. C.3 D.10.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函数g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.的最大值为______.12.若直线的倾斜角为,则______.13.在平面直角坐标系中,点在第二象限,,,则向量的坐标为________.14.在平面直角坐标系中,点,,若直线上存在点使得,则实数的取值范围是_____.15.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.16.已知为的三个内角A,B,C的对边,向量,.若,且,则B=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.18.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:519.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.20.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.21.数列an,n∈N*各项均为正数,其前n项和为S(1)求证数列Sn2为等差数列,并求数列(2)设bn=24Sn4-1,求数列bn的前n
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【题目详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【题目点拨】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.2、D【解题分析】
设且,半径为,根据题意列出方程组,求得的值,即可求解.【题目详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【题目点拨】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.3、C【解题分析】
通过程序一步步分析得到结果,从而得到输出结果.【题目详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【题目点拨】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.4、B【解题分析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.5、D【解题分析】
根据向量的加减法的几何意义以及向量数乘的定义即可判断.【题目详解】,,,,故选D.【题目点拨】本题主要考查向量的加减法的几何意义以及向量数乘的定义的应用.6、D【解题分析】
利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【题目详解】设两个向量的夹角为,则,故.故选:D.【题目点拨】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.7、B【解题分析】
先由角的终边过点,求出,再由二倍角公式,即可得出结果.【题目详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【题目点拨】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.8、D【解题分析】
由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【题目详解】解:为非零实数),可得:,由正弦定理,可得:,对于A,时,可得:,可得,即为直角,可得是直角三角形,故正确;对于B,时,可得:,可得为最大角,由余弦定理可得,可得是锐角三角形,故正确;对于C,时,可得:,可得为最大角,由余弦定理可得,可得是钝角三角形,故正确;对于D,时,可得:,可得,这样的三角形不存在,故错误.故选:D.【题目点拨】本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想,属于基础题.9、D【解题分析】
设的中点分别为,判断出中点的轨迹是等边三角形的高,由此计算出正三棱柱的边长,进而计算出正三棱柱的体积.【题目详解】设的中点分别为,连接.由于平面,所以.当时,中点为平面的中心,即的中点(设为点)处.当时,此时的中点为的中点.所以点的轨迹是三角形的高.由于三角形是等边三角形,而,所以.故正三棱柱的体积为.故选:D【题目点拨】本小题主要考查线面平行的有关性质,考查棱柱的体积计算,考查空间想象能力,考查分析与解决问题的能力,属于中档题.10、B【解题分析】
根据变换T(m,n)可生成函数g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【题目详解】由题意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因为y=1x+x-2在x∈[2,10]上单调递减且为正值,y=10-x在x∈[2,10]上单调递减且为正值,所以g(x)=10-x(【题目点拨】本题主要考查了函数的单调性,利用单调性求函数的最大值,涉及创设新情景及函数式的变形,属于难题二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】
由余弦型函数的值域可求得整个函数的值域,进而得到最大值.【题目详解】,即故答案为:【题目点拨】本题考查含余弦型函数的值域的求解问题,关键是明确在自变量无范围限制时,余弦型函数的值域为.12、【解题分析】
首先利用直线方程求出直线斜率,通过斜率求出倾斜角.【题目详解】由题知直线方程为,所以直线的斜率,又因为倾斜角,所以倾斜角.故答案为:.【题目点拨】本题主要考查了直线倾斜角与直线斜率的关系,属于基础题.13、【解题分析】
由三角函数的定义求出点的坐标,然后求向量的坐标.【题目详解】设点,由三角函数的定义有,得,,得,所以,所以故答案为:【题目点拨】本题考查三角函数的定义的应用和已知点的坐标求向量坐标,属于基础题.14、.【解题分析】
设由,求出点轨迹方程,可判断其轨迹为圆,点又在直线,转化为直线与圆有公共点,只需圆心到直线的距离小于半径,得到关于的不等式,求解,即可得出结论.【题目详解】设,,,,整理得,又点在直线,直线与圆共公共点,圆心到直线的距离,即.故答案为:.【题目点拨】本题考查求曲线的轨迹方程,考查直线与圆的位置关系,属于中档题.15、【解题分析】
根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【题目详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【题目点拨】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.16、【解题分析】
根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【题目详解】根据题意,由正弦定理可得则所以答案为。【题目点拨】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解题分析】
(1)由勾股定理得,已知,故得证;(2)由题,E为AB中点,,故ABCD为平行四边形,,由F为PB中点,EF为三角形APB的中位线,故,AP和AD相交于A,EF和CE相交于E,故得证.【题目详解】证明:(1)因为,,,所以,由所以.因为,,所以平面.(2)因为为棱的中点,所以,因为,所以.因为,所以,所以四边形为平行四边形,所以,所以平面.因为,分别为棱,的中点,所以,所以平面.因为,平面,平面,所以平面平面.【题目点拨】本题考查直线和平面垂直的判定,平面和平面平行的判断,比较基础.18、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解题分析】
(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即可得出结果.【题目详解】(1)由频率分布直方图可得:,(2)平均分为众数为65分.中位数为(3)数学成绩在的人数为,在的人数为,在的人数为,在的人数为,在的人数为,所以数学成绩在之外的人数为100-5-20-40-25=10.【题目点拨】本题主要考查样本估计总体,由题中频率分布直方图,结合平均数、中位数等概念,即可求解,属于基础题型.19、(1)是偶函数(2)见解析(3)【解题分析】
(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【题目详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【题目点拨】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.20、(1)见解析.(2)见解析.【解题分析】
(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【题目详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林延边安图县机关事业单位招聘员额经费管理工作人员8人历年高频重点提升(共500题)附带答案详解
- 厦门市事业单位2025年编内工作人员统一历年高频重点提升(共500题)附带答案详解
- 二零二五年度港口航道工程合同范本2篇
- 华师大教育科学学院《现代教育论丛》编辑部招考聘用编辑高频重点提升(共500题)附带答案详解
- 北京应急总医院合同制皮肤科医师招考聘用高频重点提升(共500题)附带答案详解
- 北京大学邯郸创新研究院招考聘用高频重点提升(共500题)附带答案详解
- 北京东方企业创新发展中心招考聘用人员高频重点提升(共500题)附带答案详解
- 云南省永平县应急管理局招考1名公益性岗位人员高频重点提升(共500题)附带答案详解
- 内蒙古建筑职业技术学院公开招聘15名工作人员高频重点提升(共500题)附带答案详解
- 佛山市顺德区大良街道第二批招考17名治安员高频重点提升(共500题)附带答案详解
- [QC成果]提高剪力墙施工质量一次合格率
- 移印工作业指导书
- 乐高基础篇乐高积木和搭建种类专题培训课件
- 低血糖的观察和护理课件
- 事故形成的冰山理论
- 溶解度曲线教学设计
- 硅胶产品工艺流程图
- 医院各科室规章制度汇编
- 土地翻耕施工组织方案
- 三级配电箱电路图(共2页)
- 学校中层干部量化考核表
评论
0/150
提交评论