版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市求知中学数学高一第二学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(
)A. B. C. D.2.已知集合,集合为整数集,则()A. B. C. D.3.向量,,,满足条件.,则A. B. C. D.4.“”是“函数的图像关于直线对称”的()条件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要5.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A. B. C. D.6.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.7.在中,内角A,B,C所对的边分别是a,b,c,若,,则的面积是()A. B. C. D.8.设数列的前项和为,且,则数列的前10项的和是()A.290 B. C. D.9.已知数列是公比为2的等比数列,满足,设等差数列的前项和为,若,则()A.34B.39C.51D.6810.已知数列是首项为,公差为的等差数列,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,且,则_______.12.若三棱锥的底面是以为斜边的等腰直角三角形,,,则该三棱锥的外接球的表面积为________.13.若在等比数列中,,则__________.14.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则______________.15.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.16.已知函数那么的值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的定义域;(2)判断的奇偶性并予以证;;(3)求使>0成立的x的取值范围.18.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.19.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.20.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.21.已知函数,且.(1)求的值;(2)若在上有且只有一个零点,,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【题目详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【题目点拨】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.2、A【解题分析】试题分析:,选A.【考点定位】集合的基本运算.3、C【解题分析】向量,则,故解得.故答案为:C。4、A【解题分析】
根据充分必要条件的判定,即可得出结果.【题目详解】当时,是函数的对称轴,所以“”是“函数的图像关于直线对称”的充分条件,当函数的图像关于直线对称时,,推不出,所以“”是“函数的图像关于直线对称”的不必要条件,综上选.【题目点拨】本题主要考查了充分条件、必要条件,余弦函数的对称轴,属于中档题.5、D【解题分析】
点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【题目点拨】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.6、A【解题分析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.7、C【解题分析】
根据题意,利用余弦定理可得ab,再利用三角形面积计算公式即可得出答案.【题目详解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;则S△ABCabsinC;故选:C.【题目点拨】本题考查余弦定理、三角形面积计算公式,关键是利用余弦定理求出ab的值.8、C【解题分析】
由得为等差数列,求得,得利用裂项相消求解即可【题目详解】由得,当时,,整理得,所以是公差为4的等差数列,又,所以,从而,所以,数列的前10项的和.故选.【题目点拨】本题考查递推关系求通项公式,等差数列的通项及求和公式,裂项相消求和,熟记公式,准确得是等差数列是本题关键,是中档题9、D【解题分析】由数列是公比为的等比数列,且满足,得,所以,所以,设数列的公差为,则,故选D.10、C【解题分析】
本题首先可根据首项为以及公差为求出数列的通项公式,然后根据以及数列的通项公式即可求出答案.【题目详解】因为数列为首项,公差的等差数列,所以,因为所以,,故选C.【题目点拨】本题考查如何判断实数为数列中的哪一项,主要考查等差数列的通项公式的求法,等差数列的通项公式为,考查计算能力,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先由向量共线,求出,再由向量模的坐标表示,即可得出结果.【题目详解】因为,且,所以,解得,所以,因此.故答案为【题目点拨】本题主要考查求向量的模,熟记向量共线的坐标表示,以及向量模的坐标表示即可,属于基础题型.12、【解题分析】
由已知计算后知也是以为斜边的直角三角形,这样的中点到棱锥四个顶点的距离相等,即为外接球的球心,从而很容易得球的半径,计算出表面积.【题目详解】因为,所以是等腰直角三角形,且为斜边,为的中点,因为底面是以为斜边的等腰直角三角形,所以,点即为球心,则该三棱锥的外接圆半径,故该三棱锥的外接球的表面积为.【题目点拨】本题考查球的表面积,考查三棱锥与外接球,解题关键是找到外接球的球心,证明也是以为斜边的直角三角形,利用直角三角形的性质是本题的关键.也是寻找外接球球心的一种方法.13、【解题分析】
根据等比中项的性质,将等式化成即可求得答案.【题目详解】是等比数列,若,则.因为,所以,.故答案为:1.【题目点拨】本题考查等比中项的性质,考查基本运算求解能力,属于容易题.14、1028【解题分析】图乙中第行有个数,第行最后的一个数为,前行共有个数,由知出现在第45行,第45行第一个数为1937,第个数为2011,所以.[来15、1.98.【解题分析】
本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【题目详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【题目点拨】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16、【解题分析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)奇函数,证明见解析;(3)见解析【解题分析】
(1)解不等式即得函数的定义域;(2)利用奇偶性的定义判断函数的奇偶性并证明;(3)对a分类讨论,利用对数函数的单调性解不等式.【题目详解】(1)由题得,所以,所以函数的定义域为;(2)函数的定义域为,所以函数的定义域关于原点对称,所以,所以函数f(x)为奇函数.(3)由题得,当a>1时,所以,因为函数的定义域为,所以;当0<a<1时,所以.【题目点拨】本题主要考查对数函数的定义域的求法,考查函数奇偶性的判断和证明,考查对数函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1).(2)见解析.【解题分析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和19、(1)圆:.(2)证明见解析;,.【解题分析】
(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【题目详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【题目点拨】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.20、(1);(2)1【解题分析】
(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【题目详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诚信教育活动方案
- 培养管理能力
- 品质经理的年终总结
- 礼貌课课件教学课件
- 采样定理课件教学课件
- 2.3.2气体摩尔体积 课件高一上学期化学人教版(2019)必修第一册
- 吉林省2024七年级数学上册第2章整式及其加减阶段综合训练范围2.4课件新版华东师大版
- 流行病调查毕业论文
- 文明出行校园交通安全教育主题班会课件
- 模特形象培训课程
- 复旦大学数学物理方法讲义
- 上海破产管理人扩容考试参考题库(含答案)
- 绘本课件小兔子的月亮
- 基础篇1、松下电器历史简介
- 学生餐饮方面的消费者行为分析
- 汽车维修价格表
- 川气东送武汉隧道内双管安装技术
- 中班音乐韵律游戏《阿凡提寻宝记》原版有声动态PPT课件
- 空调水系统的节能措施以及水泵调节
- 奇妙的黄金数在生活中广泛应用学习资料
- 采煤机司机安全培训
评论
0/150
提交评论