版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省枣庄现代实验学校数学高一第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过两点,则的斜率为()A. B. C. D.2.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定3.已知,其中,则()A. B. C. D.4.已知向量,则()A.12 B. C. D.85.把函数,图象上所有的点向右平行移动个单位长度,横坐标伸长到原来的2倍,所得图象对应的函数为()A. B.C. D.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.127.在下列区间中,函数的零点所在的区间为()A. B. C. D.8.已知圆和圆只有一条公切线,若,且,则的最小值为()A.2 B.4 C.8 D.99.将函数y=sinx-πA.y=sin1C.y=sin110.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是A.4 B.5 C.6 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.和2的等差中项的值是______.12.数列通项公式,前项和为,则________.13.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.14.若直线与直线互相平行,那么a的值等于_____.15.函数的单调增区间为_________.16.已知,,若,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.18.研究正弦函数的性质(1)写出其单调增区间的表达式(2)利用五点法,画出的大致图像(3)用反证法证明的最小正周期是19.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.20.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.21.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
直接代入两点的斜率公式,计算即可得出答案。【题目详解】故选A【题目点拨】本题考查两点的斜率公式,属于基础题。2、A【解题分析】甲批次的平均数为0.617,乙批次的平均数为0.6133、D【解题分析】
先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【题目详解】因为,且,所以,因为,所以,因此,从而,,选D.【题目点拨】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.4、C【解题分析】
根据向量的坐标表示求出,即可得到模长.【题目详解】由题,,所以.故选:C【题目点拨】此题考查向量的数乘运算和减法运算的坐标表示,并求向量的模长,关键在于熟记公式,准确求解.5、C【解题分析】
利用二倍角的余弦公式以及辅助角公式将函数化为的形式,然后再利用三角函数的图像变换即可求解.【题目详解】函数,函数图象上所有的点向右平行移动个单位长度可得,在将横坐标伸长到原来的2倍,可得.故选:C【题目点拨】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的图像平移伸缩变换,需熟记公式,属于基础题.6、C【解题分析】
由开始,按照框图,依次求出s,进行判断。【题目详解】,故选C.【题目点拨】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。7、B【解题分析】
由函数的解析式,再根据函数零点的存在定理可得函数的零点所在的区间.【题目详解】函数的零点所在的区间即函数与的交点所在区间.由函数与在定义域上只有一个交点,如图.函数在定义域上只有一个零点.又,所以.所以的零点在上故选:B【题目点拨】本题主要考查求函数的零点所在区间,函数零点的存在定理,属于基础题.8、D【解题分析】
由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得,再利用“1”的代换,使用基本不等式求得的最小值.【题目详解】解:由题意可得两圆相内切,两圆的标准方程分别为,,圆心分别为,,半径分别为2和1,故有,,,当且仅当时,等号成立,的最小值为1.故选:.【题目点拨】本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到是解题的关键和难点.9、C【解题分析】
将函数y=sin(x-π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(12x-π3),再向左平移π3个单位得到的解析式为y=sin(12(x+π3)-10、C【解题分析】
根据相邻正方体的关系得出个正方体的棱长为等比数列,求出塔形表面积的通项公式,令,即可得出的范围.【题目详解】设从最底层开始的第层的正方体棱长为,则是以2为首项,以为公比的等比数列.∴是以4为首项,以为公比的等比数列∴塔形的表面积为.令,解得.∴塔形正方体最少为6个.故选C.【题目点拨】此题考查了立体图形的表面积问题以及等比数列求和公式的应用.解决本题的关键是得到上下正方体的棱长之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是6个面之外,上面的正方体都是露出了4个面.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据等差中项性质求解即可【题目详解】设等差中项为,则,解得故答案为:【题目点拨】本题考查等差中项的求解,属于基础题12、1【解题分析】
利用裂项求和法求出,取极限进而即可求解.【题目详解】,故,所以,故答案为:1【题目点拨】本题考查了裂项求和法以及求极限值,属于基础题.13、【解题分析】
圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【题目详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【题目点拨】此题考察圆柱侧面积公式,属于基础题目.14、;【解题分析】由题意得,验证满足条件,所以15、【解题分析】
先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【题目详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【题目点拨】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.16、【解题分析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【题目详解】因为,所以,整理得:,解得:【题目点拨】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据对比中项的性质即可得出一个式子,再带入等差数列的通项公式即可求出公差.(2)根据(1)的结果,利用分组求和即可解决.【题目详解】(1)因为成等比数列,所以,所以,即,因为,所以,所以;(2)因为,所以,,.【题目点拨】本题主要考查了等差数列通项式,以及等差中项的性质.数列的前的求法,求数列前项和常用的方法有错位相减、分组求和、裂项相消.18、(1)(2)见解析(3)见解析【解题分析】
(1)利用正弦函数的图象和性质即可得解;(2)利用五点法作函数的图象即可;(3)先证明,再假设存在,使得,令,可得,令,可得,得到矛盾,即可得证.【题目详解】(1)单调递增区间为,所以单调递增区间的表达式为(2)列表:描点,连线,可得函数图象如下:(3)证明:,假设存在,使得,即,令,则,即;再令,可得,得到矛盾,综上可知的最小正周期是.【题目点拨】本题主要考查了正弦函数的单调性,五点法作函数的图象,考查了反证法的应用,属于中档题.19、(1);(2)【解题分析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因为的顶点在单位圆上,所以,所以,由余弦定理,..点睛:本题主要考查了正弦定理、两角和的正弦函数公式、同角三角函数基本关系式、余弦定理、三角形面积公式在解三角形中的应用,熟练掌握相关公式是解题的关键,考查了转化思想和数形结合思想的应用,属于中档题.20、(1)144;(2)5.【解题分析】
(1)由同角的三角函数关系,由,可以求出的值,再由面积公式可以求出的值,最后利用平面向量数量积的公式求出的值;(2)由(1)可知的值,再结合已知,可以求出的值,由余弦定理可以求出的值.【题目详解】(1),又因为的面积是30,所以,因此(2)由(1)可知,与联立,组成方程组:,解得或,不符合题意舍去,由余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动漫的课件教学课件
- 2024年度版权许可合同:影视作品信息网络传播
- 2024年度房屋买卖合同标的房屋描述及交易细节
- 瓜子效应课件教学课件
- 2024年度特许加盟合同
- 2024年度二手挖掘机买卖合同的法律适用
- 2024个人向法定代表人借款合同范本示例
- 2024年度展览设施安装合同
- 2024年家政工派遣与雇佣合同
- 2024年广告合作与代理合同
- 污水源热泵方案
- QCT 1037-2016 道路车辆用高压电缆
- 现代交换原理与通信网技
- 全科医生临床常见病门急诊病历模板(范例)
- GH/T 1421-2023野生食用菌保育促繁技术规程块菌(松露)
- 商业综合体停车收费管理详细规定
- 健康管理专业职业生涯规划书
- 滑膜炎的知识宣教
- 第23课《孟子三章富贵不能淫》课件(共22张)语文八年级上册
- 合理用药软件系统建设方案
- Unit4Whatcanyoudo-PartBLetslearn(课件)人教PEP版英语五年级上册
评论
0/150
提交评论