版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市通渭县三校2024届高一数学第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,若不等式恒成立,则实数a的取值范围是()A. B. C. D.2.阅读如图所示的程序框图,运行相应的程序,输出的值等于()A.-3 B.-10 C.0 D.-23.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形4.等差数列{an}的前n项和为Sn,若S9=S4,则S13=()A.13 B.7 C.0 D.15.如图,在四棱锥中,底面,底面为直角梯形,,,则直线与平面所成角的大小为()A. B. C. D.6.执行如图所示的程序框图,令,若,则实数a的取值范围是A. B.C. D.7.圆与圆的位置关系是()A.外离 B.相交 C.内切 D.外切8.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.9.若为圆的弦的中点,则直线的方程是()A. B.C. D.10.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000m/h,飞行员先看到山顶的俯角为,经过1min后又看到山顶的俯角为,则山顶的海拔高度为(精确到0.1km,参考数据:)A.11.4km B.6.6km C.6.5km D.5.6km二、填空题:本大题共6小题,每小题5分,共30分。11.函数的递增区间是__________.12.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.13.设a>0,b>0,若是与3b的等比中项,则的最小值是__.14.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于________.15.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.16.将二进制数110转化为十进制数的结果是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.18.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.19.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.20.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.21.设全集为实数集,,,.(1)若,求实数的取值范围;(2)若,且,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由题意可得恒成立,讨论,,运用基本不等式,可得最值,进而得到所求范围.【题目详解】恒成立,即为恒成立,当时,可得的最小值,由,当且仅当取得最小值8,即有,则;当时,可得的最大值,由,当且仅当取得最大值,即有,则,综上可得.故选.【题目点拨】本题主要考查不等式恒成立问题的解法,注意运用参数分离和分类讨论思想,以及基本不等式的应用,意在考查学生的转化思想、分类讨论思想和运算能力.2、A【解题分析】
第一次循环,;第二次循环,;第三次循环,,当时,不成立,循环结束,此时,故选A.3、B【解题分析】
利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【题目详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【题目点拨】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.4、C【解题分析】
由题意,利用等差数列前n项和公式求出a1=﹣6d,由此能求出S13的值.【题目详解】∵等差数列{an}的前n项和为Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故选:C.【题目点拨】本题考查等差数列的前n项和公式的应用,考查运算求解能力,是基础题.5、A【解题分析】
取中点,中点,连接,先证明为所求角,再计算其大小.【题目详解】取中点,中点,连接.设易知:平面平面易知:四边形为平行四边形平面,即为直线与平面所成角故答案选A【题目点拨】本题考查了线面夹角,先找出线面夹角是解题的关键.6、D【解题分析】该程序的功能是计算并输出分段函数.当时,,解得;当时,,解得;当时,,无解.综上,,则实数a的取值范围是.故选D.7、D【解题分析】
根据圆的方程求得两圆的圆心和半径,根据圆心距和两圆半径的关系可确定位置关系.【题目详解】由圆的方程可知圆圆心为,半径;圆圆心为,半径圆心距为:两圆的位置关系为:外切本题正确选项:【题目点拨】本题考查圆与圆的位置关系的判定,关键是能够通过圆的方程确定两圆的圆心和半径,从而根据圆心距和半径的关系确定位置关系.8、C【解题分析】
根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【题目详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【题目点拨】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.9、D【解题分析】
圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【题目详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【题目点拨】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.10、C【解题分析】
根据题意求得和的长,然后利用正弦定理求得BC,最后利用求得问题答案.【题目详解】在中,根据正弦定理,所以:山顶的海拔高度为18-11.5=6.5km.故选:C【题目点拨】本题考查了正弦定理在实际问题中的应用,考查了学生数学应用,转化与划归,数学运算的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】
先利用辅助角公式对函数化简,由可求解.【题目详解】函数,由,可得,所以函数的单调增区间为.故答案为:【题目点拨】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.12、【解题分析】
取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【题目详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【题目点拨】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.13、【解题分析】由已知,是与的等比中项,则则,当且仅当时等号成立故答案为2【题目点拨】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.14、1【解题分析】
由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【题目详解】由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=1.故答案为1.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a,b均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p,q.15、【解题分析】
根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【题目详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【题目点拨】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.16、6【解题分析】
将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【题目详解】,故答案为:6.【题目点拨】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);,,;(2)乙机床加工零件的质量更稳定.【解题分析】
(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【题目详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【题目点拨】本题主要考查平均数与方差,熟记公式即可,属于常考题型.18、(1)证明见解析;(2).【解题分析】
(1)由平面得出,由底面为正方形得出,再利用直线与平面垂直的判定定理可证明平面;(2)由勾股定理计算出,由点为线段的中点得知点到平面的距离等于,并计算出的面积,最后利用锥体的体积公式可计算出三棱锥的体积.【题目详解】(1)平面,平面,,又为正方形,,又平面,平面,,平面;(2)由题意知:,又,,,点到面的距离为,.【题目点拨】本题考查直线与平面垂直的判定,考查三棱锥体积的计算,在计算三棱锥的体积时,充分利用题中的线面垂直关系和平面与平面垂直的关系,寻找合适的底面和高来进行计算,考查计算能力与推理能力,属于中等题.19、(1);(2)或.【解题分析】
(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的斜率是否存在,根据点到直线的距离和勾股定理列式可得直线的倾斜角.【题目详解】(1)设圆的一般方程为,将点、、的坐标代入圆的方程得,解得,所以,圆的一般方程为,标准方程为;(2)设圆心到直线的距离为,则.①当直线的斜率不存在时,即直线到圆心的距离为,满足题意,此时直线的倾斜角为;②当直线的斜率存在时,设直线的方程为,即,则圆心到直线的距离为,解得,此时,直线的倾斜角为.综上所述,直线的倾斜角为或.【题目点拨】本题考查圆的方程的求解,同时也考查了利用直线截圆的弦长求直线的倾斜角,一般转化为求圆心到直线的距离,并结合点到直线的距离公式以及勾股定理列等式求解,考查计算能力,属中档题.20、(1)见证明;(2);(3)【解题分析】
(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段相交,交点为,连接,;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长【题目详解】(1)证明:由平面,可得,又由,,故平面.又平面,所以.(2)如图,作于点,连接.由,,可得平面.因此,从而为二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值为.(3)因为,故过点作的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年葵花籽种植户互助合作社合同3篇
- 2025年度旅游主题公园运营管理合同4篇
- 二零二五年度煤炭清洁利用技术研发与应用合同4篇
- 2025版旅游交通车辆租赁及保险合同4篇
- 二零二五年度高新技术企业税收优惠政策申请合同3篇
- 二零二五年度铝单板市场调研采购合同3篇
- 2025年猪圈修建及粪污处理系统合同模板3篇
- 2025年无证房产转让合同范本专业版3篇
- 二零二五年度绿化工程后期维护管理合同4篇
- 2025年私立医院护士老年护理专业聘用合同3篇
- GB/T 15593-2020输血(液)器具用聚氯乙烯塑料
- 2023年上海英语高考卷及答案完整版
- 西北农林科技大学高等数学期末考试试卷(含答案)
- 金红叶纸业简介-2 -纸品及产品知识
- 《连锁经营管理》课程教学大纲
- 《毕淑敏文集》电子书
- 颈椎JOA评分 表格
- 员工岗位能力评价标准
- 定量分析方法-课件
- 朱曦编著设计形态知识点
- 110kV变电站工程预算1
评论
0/150
提交评论