云南省马关县第二中学2024届高一数学第二学期期末检测模拟试题含解析_第1页
云南省马关县第二中学2024届高一数学第二学期期末检测模拟试题含解析_第2页
云南省马关县第二中学2024届高一数学第二学期期末检测模拟试题含解析_第3页
云南省马关县第二中学2024届高一数学第二学期期末检测模拟试题含解析_第4页
云南省马关县第二中学2024届高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省马关县第二中学2024届高一数学第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角三角形中,,,分别为内角,,的对边,已知,,,则的面积为()A. B. C. D.2.执行如图所示的程序框图,输出S的值为()A.- B. C.- D.3.方程的解集为()A.B.C.D.4.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则5.若,,,点C在AB上,且,设,则的值为()A. B. C. D.6.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或7.点是空间直角坐标系中的一点,过点作平面的垂线,垂足为,则点的坐标为()A.(1,0,0) B. C. D.8.将函数的图象向右平移个单位长度后得到函数的图象,若当时,的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D.9.若,A点的坐标为,则B点的坐标为()A. B. C. D.10.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差二、填空题:本大题共6小题,每小题5分,共30分。11.若当时,不等式恒成立,则实数a的取值范围是_____.12.已知正数、满足,则的最小值是________.13.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.14.在中,若,则____;15.若等比数列满足,且公比,则_____.16.两圆,相切,则实数=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.18.在中,角的平分线交于点D,是面积的倍.(I)求的值;(II)若,,求的值.19.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.20.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.21.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由结合题意可得:,故,△ABC为锐角三角形,则,由题意结合三角函数的性质有:,则:,即:,则,由正弦定理有:,故.本题选择D选项.点睛:在解决三角形问题中,求解角度值一般应用余弦定理,因为余弦定理在内具有单调性,求解面积常用面积公式,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.2、D【解题分析】试题分析:由已知可得,故选D.考点:程序框图.3、C【解题分析】

利用反三角函数的定义以及正切函数的周期为,即可得到原方程的解.【题目详解】由,根据正切函数图像以及周期可知:,故选:C【题目点拨】本题考查了反三角函数的定义以及正切函数的性质,需熟记正切函数的图像与性质,属于基础题.4、D【解题分析】

利用面面、线面位置关系的判定和性质,直接判定.【题目详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【题目点拨】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.5、B【解题分析】

利用向量的数量积运算即可算出.【题目详解】解:,,又在上,故选:【题目点拨】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.6、C【解题分析】

利用直线与直线垂直的性质直接求解.【题目详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【题目点拨】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.7、B【解题分析】

根据空间直角坐标系的坐标关系,即可求得点的坐标.【题目详解】空间直角坐标系中点过点作平面的垂线,垂足为,可知故选:B【题目点拨】本题考查了空间直角坐标系及坐标关系,属于基础题.8、C【解题分析】

根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【题目详解】由题意得:由图象平移可知:当时,,,,,又的图象与直线恰有两个公共点,解得:本题正确选项:【题目点拨】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.9、A【解题分析】

根据向量坐标的求解公式可求.【题目详解】设,因为A点的坐标为,所以.所以,即.故选:A.【题目点拨】本题主要考查平面向量坐标的运算,侧重考查数学运算的核心素养.10、A【解题分析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【题目详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【题目点拨】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【题目详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【题目点拨】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.12、.【解题分析】

利用等式得,将代数式与代数式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【题目详解】,所以,由基本不等式可得,当且仅当时,等号成立,因此,的最小值是,故答案为:.【题目点拨】本题考查利用基本不等式求最值,解题时要对代数式进行合理配凑,考查分析问题和解决问题的能力,属于中等题.13、【解题分析】

计算得到,根据得到范围.【题目详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【题目点拨】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.14、【解题分析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.15、.【解题分析】

利用等比数列的通项公式及其性质即可得出.【题目详解】,故答案为:1.【题目点拨】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.16、0,±2【解题分析】

根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【题目详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【题目点拨】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)①当为偶数时,,当为奇数时,;②【解题分析】

试题分析:(Ⅰ)由新定义知:前项之和为两等差数列之和,一个是首项为3,公差为8的等差数列前8项和,另一个是首项为17,公差为8的等差数列前7项和,所以前项之和(Ⅱ)①根据新定义知:证明目标为,,相减得,当为奇数时,依次构成首项为a,公差为2的等差数列,,当为偶数时,依次构成首项为2-a,公差为2的等差数列,②先求和:当为偶数时,;当为奇数时,故当时,,,,由,则,解得.试题解析:(Ⅰ)易得数列前项之和(Ⅱ)①()(A)(B)(B)(A)得().所以,为公差为2的“隔项等差”数列.当为偶数时,,当为奇数时,;②当为偶数时,;当为奇数时,.故当时,,,,由,则,解得.所以存在实数,使得成等比数列()考点:新定义,等差数列通项及求和18、(I);(II).【解题分析】

(I)根据是面积的倍列式,由此求得的值.(II)用来表示,利用正弦定理和两角差的正弦公式,化简(I)所得的表达式,求得的值,进而求得的值,利用正弦定理求得的值.【题目详解】(I)因为AD平分角,所以.所以.(II)因为,所以,由(I).所以,即.得,因为AD平分角,所以.因为,由正弦定理知,即,得.【题目点拨】本小题主要考查三角形的面积公式,考查三角形内角和定理,考查正弦定理解三角形,考查角平分线的性质,属于中档题.19、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解题分析】

(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【题目详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【题目点拨】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.20、(1)证明见解析,(2)证明见解析,(3),证明见解析(4)【解题分析】

(1)右边余切化正切后,利用二倍角的正切公式变形可证;(2)将(1)的结果变形为,然后将所证等式的右边的正切化为余切即可得证;(3)根据(1)(2)的规律可得结果;(4)由(3)的结果可得.【题目详解】(1)证明:因为,所以(2)因为,所以,所以(3)一般地:,证明:因为所以,以此类推得(4).【题目点拨】本题考查了归纳推理,考查了同角公式,考查了二倍角的正切公式,属于中档题.21、(1)证明见解析;(2).【解题分析】

(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;

(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【题目详解】解:(1)取BE的中点F.

AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论