版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江宁波市北仑区2024届数学高一第二学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列满足,,则()A.8 B.16 C.24 D.482.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.3.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]4.已知,其中,则()A. B. C. D.5.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2 B.1 C.-2 D.-16.已知,则()A. B. C. D.7.已知点,则向量在方向上的投影为()A. B. C. D.8.点是空间直角坐标系中的一点,过点作平面的垂线,垂足为,则点的坐标为()A.(1,0,0) B. C. D.9.若,则的最小值为()A. B. C.3 D.210.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.若直线始终平分圆的周长,则的最小值为________12.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.13.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.14.已知数列,,且,则________.15.等差数列中,,则其前12项之和的值为______16.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角坐标系中,点,圆的圆心为,半径为2.(Ⅰ)若,直线经过点交圆于、两点,且,求直线的方程;(Ⅱ)若圆上存在点满足,求实数的取值范围.18.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.19.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.20.已知数列满足:.(1)证明数列是等比数列,并求数列的通项;(2)求数列的前项和.21.选修4-5:不等式选讲已知函数,M为不等式的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b时,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
利用等比数列的通项公式即可求解.【题目详解】设等比数列的公比为,则,解得所以.故选:A【题目点拨】本题考查了等比数列的通项公式,需熟记公式,属于基础题.2、D【解题分析】
利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【题目详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【题目点拨】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.3、B【解题分析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.4、D【解题分析】
先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【题目详解】因为,且,所以,因为,所以,因此,从而,,选D.【题目点拨】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.5、D【解题分析】
试题分析:,由与垂直可知考点:向量垂直与坐标运算6、C【解题分析】
根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【题目详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【题目点拨】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.7、A【解题分析】
,,向量在方向上的投影为,故选A.8、B【解题分析】
根据空间直角坐标系的坐标关系,即可求得点的坐标.【题目详解】空间直角坐标系中点过点作平面的垂线,垂足为,可知故选:B【题目点拨】本题考查了空间直角坐标系及坐标关系,属于基础题.9、A【解题分析】
由题意知,,,再由,进而利用基本不等式求最小值即可.【题目详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【题目点拨】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.10、C【解题分析】
结合正弦定理,利用充分条件和必要条件的定义进行判断【题目详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【题目点拨】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、9【解题分析】
平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【题目详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【题目点拨】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.12、2【解题分析】
由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【题目详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【题目详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【题目点拨】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.14、【解题分析】
由题意可得{}是以+1为首项,以2为公比的等比数列,再由已知求得首项,进一步求得即可.【题目详解】在数列中,满足得,则数列是以+1为首项,以公比为2的等比数列,得,由,则,得.由,得,故.故答案为:【题目点拨】本题考查了数列的递推式,利用构造等比数列方法求数列的通项公式,属于中档题.15、【解题分析】
利用等差数列的通项公式、前n项和公式直接求解.【题目详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【题目点拨】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.16、4【解题分析】
由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【题目详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【题目点拨】本题考查等差等比数列的基本量计算,考查计算能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)或.(Ⅱ)【解题分析】
(Ⅰ)勾股定理求出圆心到直线的距离d,利用d=1以直线的斜率存在、不存在两种情况进行分类讨论;(Ⅱ)设,由求出x、y满足的关系式,可得点在圆上,推出圆与圆有公共点,所以,列出不等式求解即可.【题目详解】(Ⅰ)当,圆心为,圆的方程为,设圆心到直线的距离为,则.①若直线的斜率存在,设直线的方程为,即,,解得,此时的方程为,即.②若直线的斜率不存在,直线的方程为,验证满足,符合题意.综上所述,直线的方程为或.(Ⅱ)设,则,于是由得,即,所以点在圆上,又点在圆上,故圆与圆有公共点,即,于是,解得,因此实数的取值范围是.【题目点拨】本题考查直线与圆的位置关系的综合应用,向量的数量积,根据圆与圆的位置关系求参数,属于中档题.18、(1)a=0.06,平均值为12.25小时(2)【解题分析】
(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出从该6人中选拔2人,从而得到这2人来自不同组别的概率.【题目详解】(1)由频率分布直方图可得第三组和第五组的频率之和为,第三组的频率为∴该样本数据的平均数所以可估计该校学生一周课外阅读时间的平均值为小时.(2)易得从第3、4、5组抽取的人数分别为3、2、1,设为,则从该6人中选拔2人的基本事件有:共15种,其中来自不同的组别的基本事件有:,共11种,∴这2人来自不同组别的概率为.【题目点拨】本题考查平均数、概率的求法,考查古典概型、频率分布直方图等基础知识,考查运算求解能力,是基础题.19、(1);(2).【解题分析】
(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【题目详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【题目点拨】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.20、(1)见证明;(2)【解题分析】
(1)由变形得,即,从而可证得结论成立,进而可求出通项公式;(2)由(1)及条件可求出,然后根据分组求和法可得.【题目详解】(1)证明:因为,所以.因为所以所以.又,所以是首项为,公比为2的等比数列,所以.(2)解:由(1)可得,所以.【题目点拨】证明数列为等比数列时,在得到后,不要忘了说明数列中没有零项这一步骤.另外,对于数列的求和问题,解题时要根据通项公式的特点选择合适的方法进行求解,属于基础题.21、(Ⅰ);(Ⅱ)详见解析.【解题分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顶级机电产品年度购销协议模板
- 宠物寄养2024专属临时照护协议
- 2024年度销售专员劳动协议
- 2024建筑行业员工保密义务协议样本
- 高等教育教材内容更新与建设方案
- 房屋租赁协议模板(2024年度)
- 强化研究生教育数智化平台的建设与应用策略
- 2024年个人住房分期贷款协议
- 2024年香港股权转让协议模板
- 2024年理疗服务合作协议书
- 2024届东北师大附中重庆一中等六校化学高一第一学期期中检测试题含解析
- 【幼儿园语言文字教学的规范化分析3000字(论文)】
- 瓶口分液器校准规范
- (完整版)医疗器械网络交易服务第三方平台质量管理文件
- 信息管理监理实施细则水利水电工程
- (医学课件)DIC患者的护理
- 跨境数据流动的全球治理进展、趋势与中国路径
- 【多旋翼无人机的组装与调试5600字(论文)】
- 2023年辽阳市宏伟区事业单位考试真题
- 环境工程专业英语 课件
- 继电保护动作分析报告课件
评论
0/150
提交评论