湖南省邵阳市第十一中学2024届数学高一下期末考试试题含解析_第1页
湖南省邵阳市第十一中学2024届数学高一下期末考试试题含解析_第2页
湖南省邵阳市第十一中学2024届数学高一下期末考试试题含解析_第3页
湖南省邵阳市第十一中学2024届数学高一下期末考试试题含解析_第4页
湖南省邵阳市第十一中学2024届数学高一下期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市第十一中学2024届数学高一下期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线x+ay+4=0与直线ax+4y-3=0互相平行,则实数a的值为()A.±2 B.2 C.-2 D.02.在某项体育比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.83.若数列,若,则在下列数列中,可取遍数列前项值的数列为()A. B. C. D.4.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为()A.48里 B.24里 C.12里 D.6里5.已知数列满足递推关系,则()A. B. C. D.6.已知等差数列的前项和为,若,则()A.18 B.13 C.9 D.77.已知向量,与的夹角为,则()A.3 B.2 C. D.18.在中,分别是角的对边,,则角为()A. B. C. D.或9.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则10.将八进制数化成十进制数,其结果为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.12.已知一组数据,,,的方差为,则这组数据,,,的方差为______.13.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.14.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.15.在等比数列{an}中,a116.化简:________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某算法框图如图所示.(1)求函数的解析式及的值;(2)若在区间内随机输入一个值,求输出的值小于0的概率.18.已知数列的前项和,且,数列满足:对于任意,有.(1)求数列的通项公式;(2)求数列的通项公式,若在数列的两项之间都按照如下规则插入一些数后,构成新数列:和两项之间插入个数,使这个数构成等差数列,求;(3)若不等式成立的自然数恰有个,求正整数的值.19.在中,角所对的边分别为.(1)若为边的中点,求证:;(2)若,求面积的最大值.20.如图,在三棱锥中,垂直于平面,.求证:平面.21.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

根据两直线平性的必要条件可得4-a【题目详解】∵直线x+ay+4=0与直线ax+4y-3=0互相平行;∴4×1-a⋅a=0,即4-a2=0当a=2时,直线分别为x+2y+4=0和2x+4y-3=0,平行,满足条件当a=-2时,直线分别为x-2y+4=0和-2x+4y-3=0,平行,满足条件;所以a=±2;故答案选A【题目点拨】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题。2、B【解题分析】

由平均数与方差的计算公式,计算90,90,93,94,93五个数的平均数和方差即可.【题目详解】90,89,90,95,93,94,93,去掉一个最高分和一个最低分后是90,90,93,94,93,所以其平均数为,因此方差为.故选B【题目点拨】本题主要考查平均数与方差的计算,熟记公式即可,属于基础题型.3、D【解题分析】

推导出是以6为周期的周期数列,从而是可取遍数列前6项值的数列.【题目详解】数列,,,,,,,,,是以6为周期的周期数列,是可取遍数列前6项值的数列.故选:D.【题目点拨】本题考查数列的周期性与三角函数知识的交会,考查基本运算求解能力,求解时注意函数与方程思想的应用.4、C【解题分析】

根据等比数列前项和公式列方程,求得首项的值,进而求得的值.【题目详解】设第一天走,公比,所以,解得,所以.故选C.【题目点拨】本小题主要考查等比数列前项和的基本量计算,考查等比数列的通项公式,考查中国古典数学文化,属于基础题.5、B【解题分析】

两边取倒数,可得新的等差数列,根据等差数列的通项公式,可得结果.【题目详解】由,所以则,又,所以所以数列是以2为首项,1为公比的等差数列所以,则所以故选:B【题目点拨】本题主要考查由递推公式得到等差数列,难点在于取倒数,学会观察,属基础题.6、B【解题分析】

利用等差数列通项公式、前项和列方程组,求出,.由此能求出.【题目详解】解:等差数列的前项和为,,,,解得,..故选:.【题目点拨】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.7、C【解题分析】

由向量的模公式以及数量积公式,即可得到本题答案.【题目详解】因为向量,与的夹角为,所以.故选:C【题目点拨】本题主要考查平面向量的模的公式以及数量积公式.8、D【解题分析】

由正弦定理,可得,即可求解的大小,得到答案.【题目详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【题目点拨】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】

根据不等式的基本性质逐一判断可得答案.【题目详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【题目点拨】本题主要考查不等式的基本性质,属于基础题.10、B【解题分析】

利用进制数化为十进制数的计算公式,,从而得解.【题目详解】由题意,,故选.【题目点拨】本题主要考查八进制数与十进制数之间的转化,熟练掌握进制数与十进制数之间的转化计算公式是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【题目详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【题目点拨】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.12、【解题分析】

利用方差的性质直接求解.【题目详解】一组数据,,,的方差为5,这组数据,,,的方差为:.【题目点拨】本题考查方差的性质应用。若的方差为,则的方差为。13、【解题分析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【题目详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【题目点拨】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.14、【解题分析】

如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.15、64【解题分析】由题设可得q3=8⇒q=3,则a716、【解题分析】

根据三角函数的诱导公式,准确运算,即可求解.【题目详解】由题意,可得.故答案为:.【题目点拨】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)从程序框图可提炼出分段函数的函数表达式,从而计算得到的值;(2)此题为几何概型,分类讨论得到满足条件下的函数x值,从而求得结果.【题目详解】(1)由算法框图得:当时,,当时,,当时,,,(2)当时,,当时,由得故所求概率为【题目点拨】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力.18、(1);,;(3).【解题分析】

(1)令求出,然后令,由得出,两式相减可得出数列是等比数列,确定该数列的首项和公比,即可求出数列的通项公式;(2)令可计算出,再令,由可得出,两式相减求出,求出,再检验是否满足的表达式,由此可得出数列的通项公式,求出,由,以及可得出的值;(3)化简可得,分类讨论,当、时,不等式成立,当时,,利用判断数列的单调性,得出该数列的最大项,可知满足不等式,且和不满足该不等式,由此可得出实数的取值范围,进而求出正整数的值.【题目详解】(1)对任意的,.当时,,解得;当时,由得出,两式相减得,化简得,即,所以,数列是以为首项,以为公比的等比数列,因此,;(2)对于任意,有.当时,,;当时,由,可得,上述两式相减得,.适合上式,因此,.由于和两项之间插入个数,使得这个数成等差数列,这个数列的公差为.,且,所以,;(3)由,得.当、,该不等式显然成立;当时,,由,得,设,,当时,,即当时,,即,则.所以,数列的最大项为,又,.由题意可中,满足不等式,和不满足不等式.,则,因此正整数的值为.【题目点拨】本题考查利用求数列的通项公式、等差数列定义的应用,同时也考查了数列不等式的求解,涉及数列单调性的应用,考查推理能力与运算求解能力,属于中等题.19、(1)详见解析;(2)1.【解题分析】

(1)证法一:根据为边的中点,可以得到向量等式,平方,再结合余弦定理,可以证明出等式;证法二:分别在和中,利用余弦定理求出和的表达式,利用,可以证明出等式;(2)解法一:解法一:记面积为.由题意并结合(1)所证结论得:,利用已知,再结合基本不等式,最后求可求出面积的最大值;解法二:利用余弦定理把表示出来,结合重要不等式,再利用三角形面积公式可得,令设,利用辅助角公式,可以求出的最大值,即可求出面积的最大值.【题目详解】(1)证法一:由题意得①由余弦定理得②将②代入①式并化简得,故;证法二:在中,由余弦定理得,在中,由余弦定理得,∵,∴,则,故;(2)解法一:记面积为.由题意并结合(1)所证结论得:,又已知,则,即,当时,等号成立,故,即面积的最大值为1.解法二:设则由,故.【题目点拨】本题考查了余弦定理、三角形面积公式的应用,考查了重要不等式及基本不等式,考查了数学运算能力.20、证明见解析【解题分析】

分析:由线面垂直的性质可得,结合,利用线面垂直的判定定理可得平面.详解:∵面,在面内,∴,又∵,,∴面.点睛:证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论