版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届抚州市重点中学高一数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边为,,,且为锐角,若,,,则()A. B. C. D.2.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.3.已知是非零向量,若,且,则与的夹角为()A. B. C. D.4.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.45.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.6.在中,,,,则=()A. B.C. D.7.的斜二测直观图如图所示,则原的面积为()A. B.1 C. D.28.执行如图所示的程序,已知的初始值为,则输出的的值是()A. B. C. D.9.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.10.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.设公差不为零的等差数列的前项和为,若,则__________.12.若关于的不等式有解,则实数的取值范围为________.13.已知在中,,则____________.14.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.15.无限循环小数化成最简分数为________16.已知向量,若,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.18.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.19.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?20.设.(1)用表示的最大值;(2)当时,求的值.21.如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:(1)平面;(2)平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【题目详解】由于,有正弦定理可得:,即由于在中,,,所以,联立,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【题目点拨】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.2、B【解题分析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【题目详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【题目点拨】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.3、D【解题分析】
由得,这样可把且表示出来.【题目详解】∵,∴,,∴,∴,故选D.【题目点拨】本题考查向量的数量积,掌握数量积的定义是解题关键.4、A【解题分析】
根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【题目详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【题目点拨】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.5、D【解题分析】
由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【题目详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【题目点拨】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.6、C【解题分析】
根据正弦定理,代入即可求解.【题目详解】因为中,,,由正弦定理可知代入可得故选:C【题目点拨】本题考查了正弦定理在解三角形中的应用,属于基础题.7、D【解题分析】
根据直观图可计算其面积为,原的面积为,由得结论.【题目详解】由题意可得,所以由,即.故选:D.【题目点拨】本题考查了斜二侧画直观图,三角形的面积公式,需要注意的是与原图与直观图的面积之比为,属于基础题.8、C【解题分析】
第一次运行:,满足循环条件因而继续循环;接下来继续写出第二次、第三次运算,直至,然后输出的值.【题目详解】初始值第一次运行:,满足循环条件因而继续循环;第二次运行:,满足循环条件因而继续循环;第三次运行:,不满足循环条件因而继续循环,跳出循环;此时.故选:C【题目点拨】本题是一道关于循环结构的问题,需要借助循环结构的相关知识进行解答,需掌握循环结构的两种形式,属于基础题.9、A【解题分析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【题目详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【题目点拨】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.10、A【解题分析】
“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【题目详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【题目点拨】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【题目详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【题目点拨】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.12、【解题分析】
利用判别式可求实数的取值范围.【题目详解】不等式有解等价于有解,所以,故或,填.【题目点拨】本题考查一元二次不等式有解问题,属于基础题.13、【解题分析】
根据可得,根据商数关系和平方关系可解得结果.【题目详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【题目点拨】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.14、【解题分析】
由图可知,15、【解题分析】
利用无穷等比数列求和的方法即可.【题目详解】.故答案为:【题目点拨】本题主要考查了无穷等比数列的求和问题,属于基础题型.16、【解题分析】
由题意利用两个向量垂直的性质,两个向量的数量积公式,求得的值.【题目详解】因为向量,若,∴,则.故答案为:1.【题目点拨】本题主要考查两个向量垂直的坐标运算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)证明见详解,,.【解题分析】
(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【题目详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【题目点拨】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.18、(1);(2).【解题分析】试题分析:(1)利用平面向量基本定理可得.(2)利用题意可得,则的最大值为.试题解析:(1),而,∴.(2)∴当时,的最大值为.19、(1)当汽车的平均速度时车流量达到最大值。(2)【解题分析】
(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【题目详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【题目点拨】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.20、(1)(2)或【解题分析】
(1)化f(x)为sinx的二次函数,根据二次函数的性质,对a讨论求出函数最大值;(2)由M(a)=2求出对应的a值即可.【题目详解】(1),∵,∴.①当,即时,;②当,即时,;③当,即时,.∴(2)当时,(舍)或-2(舍);当时,;当时,.综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南京客运资格专业能力考试
- 2024年黄山道路旅客运输考卷
- 济宁学院《芭蕾舞基训1》2021-2022学年第一学期期末试卷
- 传统肉类产业规模缩减趋势分析
- 风力发电场课程设计
- 量子光学导论课程设计
- 风筝线描班课程设计
- 2024-2030年中国航空用铝行业竞争格局及产销需求预测研究报告
- 2024-2030年中国美发护发产品行业消费态势与营销前景预测报告
- 2024-2030年中国禽肉行业发展态势与竞争策略分析研究报告
- 工程借用资质免责协议书
- 农家乐场所消防安全管理制度
- 湘教版地理1《海洋与人类》
- 五年级英语教学反思12篇 人教版五年级英语上册教学反思
- 2023年北京大学强基计划测试数学真题试卷
- 客户信用等级评价附件
- 学前儿童数概念与运算核心经验
- 信息组织元数据
- 广东英语中考必背1600词
- “双减”背景下初中数学分层作业设计实践探究 论文
- 食育教学活动案例与分析
评论
0/150
提交评论