第2讲立体几何中的空间角问题_第1页
第2讲立体几何中的空间角问题_第2页
第2讲立体几何中的空间角问题_第3页
第2讲立体几何中的空间角问题_第4页
第2讲立体几何中的空间角问题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实用文档第2讲立体几何中的空间角问题高考定位以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查,高考注重以传统方法解决空间角问题,但也可利用空间向量来求解.真题感悟(2018·浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.1.求异面直线所成角的方法方法一:几何法.用几何法求两条异面直线所成角的步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.用空间向量法求两条异面直线a,b所成角θ的步骤为:①求出直线a,b的方向向量,分别记为m,n;②计算cos〈m,n〉=eq\f(m·n,|m||n|);③利用cosθ=|cos〈m,n〉|,以及θ∈(0°,90°],求出角θ.2.求直线与平面所成角的方法方法一:几何法.用几何法求直线l与平面α所成角的步骤为:①找出直线l在平面α上的射影;②证明所找的角就是所求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.用空间向量法求直线AB与平面α所成角θ的步骤为:①求出平面α的法向量n与直线AB的方向向量eq\o(AB,\s\up6(→));②计算cos〈eq\o(AB,\s\up6(→)),n〉=eq\f(\o(AB,\s\up6(→))·n,|\o(AB,\s\up6(→))||n|);③利用sinθ=|cos〈eq\o(AB,\s\up6(→)),n〉|,以及θ∈[0°,90°],求出角θ.3.求二面角的方法方法一:几何法.用几何法求二面角α-l-β的平面角θ的步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.用空间向量法求二面角αlβ的平面角θ的步骤为:①求两个半平面α,β的法向量m,n;②计算cos〈m,n〉=eq\f(m·n,|m||n|);③根据图形和计算结果判断θ是锐角、直角,还是钝角,从而得出θ与〈m,n〉是相等关系还是互补关系.热点一求线线角【例1】如图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=2eq\r(2),PA=2,求异面直线BC与AE所成角的大小.探究提高求异面直线所成的角,可以应用向量法,也可以应用异面直线的定义求解.【训练1】(1)(2018·浙江卷)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角SABC的平面角为θ3,则()A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1(2)(2016·浙江卷)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=eq\r(5),∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是________.热点二求线面角【例2】(2017·浙江卷)如图,已知四棱锥PABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面PAB;(2)求直线CE与平面PBC所成角的正弦值.探究提高(1)传统法解决线面角问题的关键是先找出线面所成的角,再在三角形中解此角.(2)利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【训练2】如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=eq\f(1,2)AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.热点三求二面角【例3】(2016·浙江卷)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.探究提高(1)用传统法求解二面角的关键是:先找出二面角的平面角,再在三角形中求解此角.(2)利用法向量的根据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在能断定所求二面角的平面角是锐角、直角或钝角的情况下,这种方法具有一定的优势,但要注意,必须能断定“所求二面角的平面角是锐角、直角或钝角”,在用法向量法求二面角的大小时,务必要作出这个判断,否则解法是不严谨的.【训练3】(2018·绍兴仿真考试)四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,PC与平面PAB所成的角的正弦值为eq\f(\r(6),4).(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D-PE-A的余弦值.1.两条直线夹角的范围为eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).设直线l1,l2的方向向量分别为n1,n2,其夹角为θ,则cosθ=|cosn1,n2|=eq\f(|n1·n2|,|n1||n2|).2.二面角的范围为[0,π].设半平面α与β的法向量分别为n1与n2,二面角为θ,则|cosθ|=|cosn1,n2|=eq\f(|n1·n2|,|n1||n2|).3.利用空间向量求解二面角时,易忽视二面角的范围,误以为两个法向量的夹角就是所求的二面角,导致出错.4.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性.1.(2018·天津卷)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2eq\r(3),∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.3.(2018·全国Ⅰ卷)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.4.(2018·江苏卷)如图,在正三棱柱ABCA1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.5.(2018·全国Ⅱ卷)如图,在三棱锥PABC中,AB=BC=2eq\r(2),PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角MPAC为30°,求PC与平面PAM所成角的正弦值.6.(2018·北京卷)如图,在三棱柱ABCA1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=eq\r(5),AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角BCDC1的余弦值;(3)证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论