版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2立体图形的直观图学习目标1.掌握用斜二测画法画水平放置的平面图形的直观图.2.会用斜二测画法画常见的柱、锥、台、球以及简单组合体的直观图.知识点一水平放置的平面图形的直观图的画法用斜二测画法画水平放置的平面图形的直观图的步骤知识点二空间几何体直观图的画法立体图形直观图的画法步骤(1)画轴:与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)画底面:平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面,按照平面图形的画法,画底面的直观图.(3)画侧棱:已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图:去掉辅助线,将被遮挡的部分改为虚线.1.在斜二测画法中,各条线段的长度都发生了改变.(×)2.在几何体的直观图中,原来平行的直线仍然平行.(√)3.在斜二测画法中平行于y轴的线段在直观图中长度保持不变.(×)一、平面图形的直观图的画法例1画出如图所示水平放置的等腰梯形的直观图.解画法:(1)如图所示,取AB所在直线为x轴,AB中点O为原点,建立直角坐标系,画对应的坐标系x′O′y′,使∠x′O′y′=45°.(2)以O′为中点在x′轴上取A′B′=AB,在y′轴上取O′E′=eq\f(1,2)OE,以E′为中点画C′D′∥x′轴,并使C′D′=CD.(3)连接B′C′,D′A′,所得的四边形A′B′C′D′就是水平放置的等腰梯形ABCD的直观图.反思感悟在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键之一,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.关键之二是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.跟踪训练1已知正五边形ABCDE,如图,试画出其直观图.解画法:(1)在图①中作AG⊥x轴于点G,作DH⊥x轴于点H.(2)在图②中画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.(3)在图②中的x′轴上取O′B′=OB,O′G′=OG,O′C′=OC,O′H′=OH,y′轴上取O′E′=eq\f(1,2)OE,分别过G′和H′作y′轴的平行线,并在相应的平行线上取G′A′=eq\f(1,2)GA,H′D′=eq\f(1,2)HD.(4)连接A′B′,A′E′,E′D′,D′C′,并擦去辅助线G′A′,H′D′,x′轴与y′轴,便得到水平放置的正五边形ABCDE的直观图A′B′C′D′E′(如图③).
二、空间几何体的直观图例2用斜二测画法画长、宽、高分别为4cm、3cm、2cm的长方体ABCD—A′B′C′D′的直观图.解(1)画轴.如图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画底面.以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=eq\f(3,2)cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2cm长的线段AA′,BB′,CC′,DD′.(4)成图.顺次连接A′,B′,C′,D′(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.反思感悟空间几何体的直观图的画法(1)对于一些常见几何体(柱、锥、台、球)的直观图,应该记住它们的大致形状,以便可以较快较准确地画出.(2)画空间几何体的直观图时,比画平面图形的直观图增加了一个z′轴,表示竖直方向.(3)z′轴方向上的线段,方向与长度都与原来保持一致.跟踪训练2用斜二测画法画出六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面上的投影是正六边形的中心O.(尺寸自定)解画法:(1)画出六棱锥P-ABCDEF的底面.①在正六边形ABCDEF中,取AD所在的直线为x轴,对称轴MN所在的直线为y轴,两轴相交于点O,如图(1);画出相应的x′轴、y′轴、z′轴,三轴相交于O′,使∠x′O′y′=45°,∠x′O′z′=90°,如图(2);②在图(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N′=eq\f(1,2)MN,以点N′为中点,画出B′C′平行于x′轴,并且长度等于BC,再以M′为中点,画出E′F′平行于x′轴,并且长度等于EF;③连接A′B′,C′D′,D′E′,F′A′得到正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′.(2)画出正六棱锥P-ABCDEF的顶点,在z′轴正半轴上截取点P′,点P′异于点O′.(3)成图.连接P′A′,P′B′,P′C′,P′D′,P′E′,P′F′,并擦去x′轴、y′轴和z′轴,便可得到六棱锥P-ABCDEF的直观图P′-A′B′C′D′E′F′,如图(3).三、直观图的还原与计算例3如图所示,一个水平放置的三角形的斜二测直观图是等腰直角三角形A′B′O′,若O′B′=1,那么原三角形ABO的面积是()A.eq\f(1,2)B.eq\f(\r(2),2)C.eq\r(2)D.2eq\r(2)答案C解析直观图中等腰直角三角形直角边长为1,因此面积为eq\f(1,2),又直观图与原平面图形面积比为eq\r(2)∶4,所以原图形的面积为eq\r(2),故选C.反思感悟平面多边形与其直观图面积间关系:一个平面多边形的面积为S原,斜二测画法得到直观图的面积为S直,则有S直=eq\f(\r(2),4)S原.跟踪训练3如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,C′D′=2cm,则原图形是()A.正方形 B.矩形C.菱形 D.一般的平行四边形答案C解析如图,在原图形OABC中,应有OD=2O′D′=2×2eq\r(2)=4eq\r(2)(cm),CD=C′D′=2cm,所以OC=eq\r(OD2+CD2)=eq\r(4\r(2)2+22)=6(cm),所以OA=OC=BC=AB,故四边形OABC是菱形.1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形答案B解析由于直角在直观图中有的成为45°,有的成为135°;当线段与x轴平行时,在直观图中长度不变且仍与x轴平行,因此答案为B.2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于()A.45°B.135°C.90°D.45°或135°答案D解析因为∠A的两边分别平行于x轴、y轴,所以∠A=90°,在直观图中,按斜二测画法规则知∠x′O′y′=45°或135°,即∠A′=45°或135°.3.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()答案C解析可分别画出各组图形的直观图,观察可得结论.4.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是________.(填序号)答案①②解析斜二测画法得到的图形与原图形中的线线相交、线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.5.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.答案2.5解析由直观图知,原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.1.知识清单:(1)水平放置的平面图形的直观图的画法.(2)空间几何体直观图的画法.(3)直观图的还原与计算.2.方法归纳:转化思想.3.常见误区:同一图形选取坐标系的角度不同,得到的直观图可能不同.1.(多选)用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法正确的是()A.原来相交的仍相交 B.原来垂直的仍垂直C.原来平行的仍平行 D.原来共点的仍共点答案ACD2.如图所示为某一平面图形的直观图,则此平面图形可能是()答案C解析根据斜二测画法可知,此直观图的平面图形可能是C.3.已知等边三角形ABC的边长为a,那么等边三角形ABC的直观图△A′B′C′的面积为()A.eq\f(\r(3),4)a2B.eq\f(\r(3),8)a2C.eq\f(\r(6),8)a2D.eq\f(\r(6),16)a2答案D解析建立如图①所示的平面直角坐标系xOy.如图②所示,建立坐标系x′O′y′,使∠x′O′y′=45°,由直观图画法,知A′B′=AB=a,O′C′=eq\f(1,2)OC=eq\f(\r(3),4)a.过点C′作C′D′⊥O′x′于点D′,则C′D′=eq\f(\r(2),2)O′C′=eq\f(\r(6),8)a.所以△A′B′C′的面积是S=eq\f(1,2)·A′B′·C′D′=eq\f(1,2)·a·eq\f(\r(6),8)a=eq\f(\r(6),16)a2.4.下列关于用斜二测画法画直观图的说法中,正确的是()A.水平放置的正方形的直观图不可能是平行四边形B.平行四边形的直观图仍是平行四边形C.两条相交直线的直观图可能是平行直线D.两条垂直的直线的直观图仍互相垂直答案B5.水平放置的△ABC的直观图如图所示,其中B′O′=C′O′=1,A′O′=eq\f(\r(3),2),那么原△ABC是一个()A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形答案A解析由△ABC的直观图,知在原△ABC中,AO⊥BC.∵A′O′=eq\f(\r(3),2),∴AO=eq\r(3).∵B′O′=C′O′=1,∴BC=2,AB=AC=2,∴△ABC为等边三角形.6.在斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.答案(4,2)解析由直观图画法“横不变,纵折半”可得点M′的坐标为(4,2).7.如图,是用斜二测画法画出的△AOB的直观图,则△AOB的面积是________.答案16解析由图可知O′B′=4,则对应△AOB中,OB=4.又和y′轴平行的线段的长度为4,则对应△AOB边OB上的高为8.所以△AOB的面积为eq\f(1,2)×4×8=16.8.如图,平行四边形O′P′Q′R′是四边形OPQR的直观图,若O′P′=3,O′R′=1,则原四边形OPQR的周长为________.答案10解析由四边形OPQR的直观图可知原四边形是矩形,且OP=3,OR=2,所以原四边形OPQR的周长为2×(3+2)=10.9.用斜二测画法画边长为4cm的水平放置的正三角形(如图)的直观图.解(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2cm,在y′轴上截取O′A′=eq\f(1,2)OA.连接A′B′,A′C′,则△A′B′C′即为正△ABC的直观图,如图②所示.10.一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3cm,高(两底面圆心连线的长度)为4cm,圆锥的高(顶点与底面圆心连线的长度)为3cm,画出此几何体的直观图.解(1)画轴.如图①所示,画x轴、z轴,使∠xOz=90°.(2)画圆柱的下底面.在x轴上取A,B两点,使AB=3cm,且OA=OB,选择椭圆模板中适当的椭圆且过A,B两点,使它为圆柱的下底面.(3)在Oz上截取OO′=4cm,过点O′作平行于Ox轴的O′x′轴,类似圆柱下底面的画法画出圆柱的上底面.(4)画圆锥的顶点.在Oz上截取点P,使PO′=3cm.(5)成图.连接A′A,B′B,PA′,PB′,整理(去掉辅助线,将被遮挡部分改成虚线)得到此几何体的直观图,如图②所示.11.如图所示,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′与x′轴垂直,且A′O′=2,则△AOB的边OB上的高为()A.2B.4C.2eq\r(2)D.4eq\r(2)答案D解析设△AOB的边OB上的高为h,因为S原图形=2eq\r(2)S直观图,所以eq\f(1,2)×OB×h=2eq\r(2)×eq\f(1,2)×2×O′B′.又OB=O′B′,所以h=4eq\r(2).12.如图所示,一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为______.答案eq\f(\r(2),2)解析画出直观图,则B′到x′轴的距离为eq\f(\r(2),2)·eq\f(1,2)OA=eq\f(\r(2),4)OA=eq\f(\r(2),2).13.如图,正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是________.答案8cm解析由题意知正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图,所以O′B′=eq\r(2)cm,对应原图形平行四边形OABC的高OB=2O′B′=2eq\r(2)cm,如图所示.所以原图形中,OA=BC=1cm,AB=OC=eq\r(2\r(2)2+12)=3cm,故原图形的周长为2×(1+3)=8(cm).14.如图所示,四边形ABCD是一平面图形的水平放置的斜二测直观图,四边形ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《数字信号处理-基于数值计算》课件-第2章
- 《氧化还原反应预习》课件
- 合同备注无效最简单三个步骤
- 投资花卉种植项目合同模板
- 工程施工合同实例
- 2025年凉山州货运从业资格证考试卷
- 2025年宁夏货运从业资格证考试题库
- 2025年福建货运从业资格证模拟考试题答案大全
- 《氧化还原用》课件
- 《城市交通特性》课件
- 国企纪检监察培训课件
- 宫腔镜可行性报告
- 预付式消费监管服务平台建设方案
- 2024年应急管理部宣传教育中心招考聘用笔试历年难、易错考点试题后附答案带解析
- 《疯狂动物城》全本台词中英文对照
- 第三小学花样跳绳校本教材(一至六年级通用)
- 手持电动工具操作规程
- 《美容皮肤学》考试复习题库(含答案)
- 七年级数学德育渗透工作总结
- 岗位调动确认书
- 学习活动二运用有效的推理形式(导学案)高二语文(选择性必修上册)
评论
0/150
提交评论