版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
博弈模型第一部分、博弈论基本概念
宇宙间处处存在矛盾、冲突、争斗、合作、共生等现象,这些现象很很早就引起各类学者的重视。数学被认为是科学的语言,能否用数学语言描述各种带有矛盾因素的模型或现象?博弈论便是这样一种处理各类带有矛盾因素的模型的数学工具,现在已被数学、经济学、社会学、军事学、生物学等专家广泛应用于讨论各类带有冲突、矛盾、合作、竞争、进化等问题及相关模型之中。博弈论已成为人们分析复杂系统与作重大决策时的有力工具。一、引言数学研究的方法是从大量的同类现象中抽象出基本要素,进步构造出能描述这类现象的模型。许多冲突模型在游戏中就存在,博弈论早期就是由研究国际象棋开始的,所以被命名为GameTheory。人们很快认识到此种理论可用于经济、政治、军事等领域,所谓“世事纷争一棋局”,正说明其中一些道理。1944年冯·诺曼(John,VonNeumann)和奥·摩根斯特恩(OskerMor-gentern)合著的《竞赛论与经济行为》(TheoryOfGSmesandEconomicBehavior)问世,总结了初期研究成果,奠定了博弈论的基础。由于该理论主要讨论在复杂的矛盾冲突等活动中,局中人(Player)采取何种合理的策略(strategy)而能处于“优越”的地位,以便取得较好效益,所以将它译为博弈论。
博弈论(Gametheory)可以被定义为是对智能的理性决策者之间冲突与合作的数学模型的研究。博弈论为分析那些涉及两个或更多个参与者且其决策会影响相互间的福利的局势提供了一般的数学方法。就此而论,博弈论便为社会科学各分支的学者和实际的决策者提供了非常重要的视角。博奕理论家所研究的局势,不仅仅是“游戏(Game)”一词所不幸表示的消遣活动,“冲突分析”或“相互影响的决策理论”或许是描述博弈论更为准确的术语。常见的游戏如棋类,两人对奕,此两人便称为局中人,他们各有一套棋路,或善于用马,或长于用炮。在每次轮到一方走子时,他可能有许多走法,这些走法依赖于当时棋局形势以及棋手想要达到的目的,以及他惯用的走法,从而形成他走棋的指导思想。对奕时指导棋手行动的思想便称为策略。对局终了可能有三种结局:甲胜;乙胜;和局。如果用数量表示各种结局,例如胜家赢得彩金若干(设所得彩金由输家付给,则输家当然失去若干),和局时都不能取得彩金,此种表示结局的数称为支付(payoff)。局中人、策略、支付是博弈论中常见的基本概念。
有些游戏中并无“机会”(chance)因素,而是全凭局中人的技艺。但某些游戏如“桥牌”、“打百分”等,“机会”却有较大作用,分发到游戏者手中的牌是随机的,它们情况要复杂一些。
游戏并非只有双方,可以有多方,如三人玩的跳棋便有三个局中人。一般只有两个局中人的称为两人博奕(或二人对策),有二个局中人的称为n人博弈。在博弈论的语言中,一个博弈(game)指的是涉及到两个或更多个参与人的某个社会局势。博弈所涉及的参与人被称为局中人(players)。正如前面博弈论的定义所述,博弈理论家一般要对局中人做两个基本的假设:他们都是理性的和他们都是智能的。这两个形容词在这里都是技术性术语,所以需要对其逐一解释。1、博弈论几个经典的例子
两个共同作案的犯罪嫌疑人被捕,并受到指控。除非至少一个人招认犯罪,否则警方无充分证据将他们按罪判刑。警方把他们关入不同的牢室,并对他们说明不同行动带来的后果。如果两人都采取沉默的抗拒态度,因警方证据不足,两人将均被判为轻度犯罪入狱1个月;如果双方都坦白,根据案情两人将被判入狱6个月;如果一个招工而另一个拒不坦白,招认者因有主动认罪立功表现将立即释放,而另一人将被判入狱9个月(所犯罪行判6个月,干扰司法加判3个月)。例一囚徒困境
囚徒困境问题可以用图1-1所示的双变量矩阵的形式来描述。
在此博弈中,每个囚徒有两种战略可供选择:坦白(或招认)、不坦白(或沉默)。图1-1的矩阵中每一个单元的两个数字表示一组特定的战略组合下两个囚犯的收益(或支付、效用,这里已经开始引用经济学的术语了),其中第1个数字是囚徒1(习惯上是位于矩阵横行上的参与者)的收益,第2个数字是囚徒2(位于竖行上的参与者)的收益。如果囚徒1选择沉默,而囚徒2选择坦白,那么囚徒1的收益是-9(表示判刑9个月),囚徒2的收益为0(表示马上释放)。
博弈论囚徒困境问题提供的解是战略组合(坦白,坦白)。严格的定义与详细的阐述留到第2章讨论。这个战略组合是个占优战略组合,因为无论对方如何选择,自己的最优选择都是坦白。如果囚徒2不坦白,囚徒1坦白的话他就会马上获释,不坦白的话还得坐一个月的牢,所以坦白比不坦白好;如果囚徒2坦白,囚徒1坦白的话要判6个月,不坦白的话则要判9个月,这样对囚徒1来说,还是坦白比不坦白好。因此坦白是囚徒1的占优战略。同样的分析表明,坦白也是囚徒2的占优战略。均衡的结果是每个囚徒都选择坦白,各判刑6个月。
初次接触博弈论的人,难免会提出这样的问题:战略组合(沉默,沉默),即如果两个人都不坦白,各人只判刑一个月,不是比战略组合(坦白,坦白)带来的各判刑6个月要好吗?如果经济学中的“有效”的术语,(沉默,沉默)是一个有效结局。有效结局并不是囚徒问题的博弈解,与此相关的理论问题在第2章里可以找到答案。
与囚徒困境类似的博弈问题在经济、社会领域有许许多多的版本,下面再举几个例子。
A,B两个公司以高低两种价格向市场竞相销售同一种产品。双方协定以高价格垄断市场,可以使彼此获得满意的利润收益,至少要好于双方都以低价格出售产品的情形。但如果某一方坚持高价,而另一方为了独占市场却将产品以低价格推销(协定不受遵守而不受处罚),那么后者将获高盈利而前者将损失惨重。市场上商品的价格战,常常出现的结局一般是以低价格销售商品,消费者从中得到好处,这种结果正是博弈论预测的合理结局,你们不妨自己设计一个类似于图1-1的A,B公司的收益矩阵。
公司产品的供给也是一个类似囚徒困境的问题。每个人可供选择的战略是:出钱、不出钱。如果大家都出钱兴办公共事业,所有人的福利都会增加。问题是,如果我出钱,你不出钱,我得不偿失;如果我不出钱你出钱,我就可以占你的便宜。结果是每个人的最优选择都是不出钱。再有个例子是军备竞赛问题。美苏冷战期间,两个超级大国构成博弈的两方,可供选择的战略是:扩军(增加军费运算)、裁军(减少军费运算)。如果双方都热衷于扩军,两国都要为此付出高额军费(从社会福利角度来看这是一笔庞大的付收益);如果双方都选择裁军,则可省下这笔钱;如果一方面裁军而另一方面进行扩军,扩军的一方到时候就会以武力相威胁甚至发动战争,这是,战争胜败双方的收益与支付将出现难以估量的差异。我们可以给出一个假象的双变量收益矩阵,如图1-2所示。
博弈论给出军备竞赛问题的是战略组合(扩军,扩军),博弈理论预测双方都扩军可以达到对抗中的相对稳定,这是一个符合现实的合理结局。例二
海滩占位
甲乙两个冷饮摊贩,他们在一个直线状的海滩上,以同样的价格、相同的质量向均匀分布在海滩上的众多游客(他们来此享受海水和阳光,进行日光浴或游泳活动)销售冷饮。既然是做生意,目的总是希望尽可能多赚点钱,甲乙两人又是在同一地点做同样的生意,竞争就是不可避免的事情了。这两个冷饮摊贩应该如何安置自己的摊位,才能相安无事地做各自的生意呢?
假定游客总是到距离自己最近的摊位购买冷饮,这也是合乎常情的。为了叙述方便,不妨将海滩长度标准化为1。按通常的想法,如果海滩左端定为0,甲在1/4处设摊,乙在3/4处设摊(见图1-3),这样既方便了顾客,又照顾到甲乙二人各占约一半顾客的生意,可谓公平合理。问题不是简单的解决了吗?
博弈论对海滩占位问题的解是甲乙二人均选择在海滩中点(1/2处)设摊,而不是原先想象的甲乙分别在1/4和3/4处占位,即使集中在一起营业会给海滩两端的顾客带来不便。社会经济领域内,就有不少与海滩占位博弈类似的现象。比如,在城市商业网点的布局上,常常会出现相同行业的多家商店都挤在一起,形成“电子一条街”、“装饰城”、“饮食广场”等。只要把这个城市想象成东西或南北方向的一个“海滩”,从博弈论中就不难找到答案。又如,同一城市的不同航空公司经营的飞往同一目的地的航班,常常出现起飞时刻几乎相同的现象。
就是在文化娱乐方面,也能运用海滩占位的博弈结论予以解释。如果把电视中高雅艺术节目与较低档的节目比作海滩的两端,那么众多的电视观众就可以看作是散布在海滩上的游客。电视台常常将黄金时段的电视节目定位在中等档次,以提高收视率。例三智猪争食
猪圈里喂养两头猪,一头大猪,一头小猪。猪圈的一边有一个猪食槽,对面的一边装有控制开关。只要猪用鼻头去拱控制开关,就会一次有6个单位的饲料流进猪食槽。如果大猪和小猪都不去拱开关,那么它们都吃不到饲料。如果小猪去拱开关,那么等它跑到另一边的猪食槽时,大猪已将流出的饲料全部都吃光了。如果大猪去拱开关,那么等它跑到猪食槽旁边,小猪差不多已吃掉了5个单位的饲料,结果大猪只能吃到1个单位的饲料。如果大猪、小猪一起去拱开关,再一起跑去吃食,那么大猪可抢到4个单位的饲料,小猪也只能吃掉2个单位的饲料。假定每拱一次开关需要消耗0.5个单位饲料的能量。大猪和小猪长期在一起进食,上面所说的情况(信息、知识)已为它们所掌握。仿照例一囚徒困境的情形,就可以画出如图1-4所示的双变量矩阵。
在这个博弈中,大猪与小猪都有两种战略选择:拱、不拱。在这个例子中可以发现,不论大猪选择拱还是不供,小猪的最优选择总是不拱。这是因为,如果大猪去拱开关,小猪不拱(等在猪食槽旁边)比拱后再跑回去争食要划算(5>1.5);如果大猪不去拱开关,小猪不拱顶多都不得食,而去拱就要白白消耗能量,不划算(0>-0.5)。所以,不拱是小猪的占优战略。给定小猪总是选择不拱,大猪的最优选择总是拱。这样,智猪争食问题的博弈论解是战略组合(拱,不拱)。智猪争食模型在社会经济领域也可以找到许多实例。
比如股份公司中就有大股东和小股东之分。股东都有监督经理的职能,他们从监督中得到的收益并不一样。在监督成本相同的情况下,大股东从监督中得到的好处显然多于小股东。通常在股份公司里,总是由大股东担当监督任务,而小股东则搭大股东的便车。股票市场上也有类似现象。一般大户总是重视搜集信息,积极进行行情分析。对小户而言,跟大户是常见现象。
进行产品研究、开发以及新产品广告宣传时,对大企业而言,其资金实力及可望的收益会使大企业有投资的积极性,而小企业往往会得不偿失。小企业通常采取与大企业建立协作生产或移植部分技术的做法。
介绍上面三个博弈论的例子,首先,是让你们对博弈论有一个初步的感性认识。虽然在阐述中也涉及了专业术语,诸如理性、有效、战略、占优战略、博弈解等,但是这些术语的含义是你们可以接受的。其次,通过这些例子想给你们留下一个深刻印象:博弈论与社会经济等诸多领域的联系是如此广泛、如此密切。下面章节对囚徒困境博弈在不同的理论的高度还要进行研究和分析,这个例子还会在不同地方被引用。二、博弈论的基本概念
什么是博弈论?简而言之,博弈论是研究多人谋略和决策问题的理论。要较深入地理解这句话,还需要关注以下一些问题。首先,一个博弈问题必须至少有两个参与博弈的主体(可能是个人,也可能是团体,如企业、国家),他们在博弈过程中都有各自的切身利益。由于利益的驱动,他们在作出自己的决策时,总想使出最好的招数(最优战略)。
其次,博弈中的各个主体之间总不可避免地存在着竞争。竞争自然贯穿博弈的全过程,竞争又将博弈的主体紧紧地联系在一起,相互依存,相互较量(说得通俗一些就是“钩心斗角”)。再者,既然主体间要进行较量,每一个博弈主体就不会闭目塞听,靠灵机一动想出高招去赢得对手,而是需要“眼观六路,耳听八方”。尽量掌握博弈中对手的特点和已经采取或可能采取的行动的知识和信息。最后,就是博弈主体最为关心的博弈结果了。博弈结果随主体之间使出招数(战略)的不同而不同。博弈结果通俗的说就是输赢的大小,博弈论用收益(或效用)来描述博弈的结果。博弈论就是从理论上进行研究和分析,为博弈预测出一个理想的结局。预测结局的正确性体现在博弈主体各方面都能自愿选择理论给他推导出的战略,并且没有博弈主体愿意独自偏离他依照博弈理论所选定的战略。可想而知,每个博弈主体所选战略一定是针对其他主体所选战略的最优反应。
以上只是对博弈论粗线条的描述,为了后面对博弈理论进行深入的讨论,下面对博弈论的几个重要的基本概念给出明确的定义。(1)参与者。参与者指的是一个博弈中的决策主体,通常又称为参与人或局中人。参与者参加博弈的目的是通过合理选择自己的行动,以期取得最大化自己的收益(或效用)水平。参与者可以是自然人,也可以是企业、团体、国家,甚至是国家组成的集团(如欧盟、OPEC等)。对参与者而言,在博弈过程中,他必须有不同的行动可作应对选择。在博弈的结局中,他能知道或计算出各参与者不同的行动组合产生的效益(或效用)。
在博弈论中,为了分析研究问题的需要,还有一个虚拟参与者——“自然”。这里,“自然”就是指不以博弈参与者的意志为转移的外生事件。“自然”选择的是外生事件的各种可能现象,并且用概率分布来描述“自然”的选择肌理。例四房地产开发博弈
现有开发商A(按博弈论说法是参与者1)正在考虑是否要投资开发一座商住楼。他面临的行动选择是开发或不开发。如果要开发,就必须投入1亿元资金;如果不去开发,投资就是0。房地产开发市场总是存在风险的。首先,风险来自市场需求的不确定性,需求可能大,也可能小。其次,风险来源是竞争对手——房地产开发商B(参与者2)。开发商B也面临与开发商A相同的决策问题。
假定市场上有两座楼出售,需求大时,每座售价可达1.4亿元;需求小时,售价为7千万元。如果市场上只有一座楼出售,需求大时,售价高达1.8亿元;需求小时,也能卖出1.1亿元可以用图1-5所示的双变量矩阵描述这个博弈问题。
在这个例子中,市场需求就是作为虚拟参与者“自然”出现在博弈问题之中。“自然”(市场需求)是以一定的概念表现出不同的状态(需求大还是小)。不言而喻,“自然”直接关系到博弈的决策结果。这个例子几乎涉及到博弈论讨论的重要问题的方方面面。相关的研究分析将在后面有关章节阐述。
在博弈论的讨论中,一般都是用i=1,2,…,n
代表参与者,用N代表“自然”。(2)信息。信息指的是参与者在博弈过程中能了解到和观察到的知识。这些知识包括“自然”的选择,其他参与者的特征和行动等。信息对参与者是至关重要的,因为一个参与者在每一次进行决策之前,必须根据观察到的其他参与者的行动和了解的有关情况作出自己的最佳选择。
由于信息内涵的不同,派生出各种有关信息的概念将博弈论划分成不同的类型,因此寻求博弈间的方法也不同。本着由浅入深认识事物的规律,这里不打算把这些概念一股脑儿和盘托出,而是分散到以后的章节中,逐步予以介绍。这里只就信息有关的两个基本的、重要的概念进行讨论。
首先,关于“共同知识”的概念。一个博弈问题所涉及的“自然”的不同选择、参与者的行动以及相应产生的效用(效果、收益)都是一种知识(信息)。比如,房地产开发商博弈问题,市场需求的大小,开发商A、B是开发还是不开发,不同情况下的利润和亏损,都是知识。开发商A、B知道这些知识也是一种信息,开发商A知道开发商B知道这些知识也是一种信息,如此等等。博弈论所谓的共同知识指的是“所有参与者知道,所有参与者知道所有参与者知道,所有参与者知道所有参与者知道所有参与者知道……”的知识。可以联想到市场需求大小是一种知识。可能开发商A、B都知道市场需求有大与小两种状态,但是开发商A并不知道开发商B知道市场需求,这时市场需求就不构成共同知识,而只能说是A与B“共同”享有的知识。
为了说明共同知识的重要性,我引用一个众所周知的寓言。故事发生在一个村庄,村里有100对已婚夫妇,他们都是地道的逻辑学家,但也有一些多少有点奇特的社会风俗。每天晚上,村里的男人们都将点起篝火,绕圈围坐举行一个会议,且每个人都谈论自己的妻子。在会议开始时,如果一个男人有理由认为他的妻子对他总是守贞的,那么他就对在坐的男人们赞扬她的美德。另一方面,如果在当前会议之前的任何时间,只要他发现了他妻子不贞的证据,那他就会悲鸣恸哭,并祈求神灵严厉地惩罚她。再则,如果一个妻子曾有不贞,那她和她的情人将会立即通知村里除她丈夫外所有的男人。所有这些传统都是村民们的共同知识。
事实上,每个妻子都已对自己的丈夫不忠。于是,每个丈夫都知道除自己的妻子外都是不贞的女人,而对自己的妻子每晚都要赞扬。
这种状况持续了很多年,直到一个传教徒走访到这个村庄。他坐在髯火旁参加了一次会议并听到每个男人都赞扬自己的妻子之后,他站到丈夫们围坐的圆中心,大声地说:“这个村里有一个妻子已经不贞了。”在此后的99个晚上丈夫们继续开会并赞扬他们的妻子,但在第100个晚上,他们全都悲鸣偷哭并祈求严厉地惩罚他们的妻子。
为了理解在这个寓言中发生了什么,首先注意到若只有一个妻子不贞,则因为(知道没有另外的不贞女人,且若有的话他是知道的)她丈夫能够立刻知道这个不贞的女人是他的妻子,所以在传教徒访问后的第一天晚上就会悲鸣恸哭。而且,由归纳法可以证明,对于1与100之间的任一正整数,如果恰有个不贞的妻子,那么在传教徒访问后的连续个晚上,所有的丈夫仍全都赞扬自己的妻子,但在第个晚上,个不贞妻子的丈夫会悲鸣恸哭。于是,在99个赞扬之夜过后的第100个晚上,每个丈夫都知道一定有100个不贞的妻子,包括他自己的妻子在内。
现在,让我们试问一下,这个传教徒告诉了这些丈夫们他们所不知道的什么?每个丈夫都已经知道了99个不贞的妻子,故这对任何人来说都不是新闻。但“这个传教徒对所有男人做了一个声明”是共同知识,从而这个传教徒所声明的内容,即有一个不贞的妻子,也就成了所有男人中间的共同知识。在传教徒宣告之前,每个形如“(每个丈夫知道)有一个不贞的妻子”的判断对于99都是正确的,但对100就不正确了。例如,若从1到100对丈夫们编号,则1已经知道2已经知道3已经知道…99已经知道100的妻子是不贞的,但1不知道2已经知道3已经知道…99已经知道100已经知道1的妻子是不贞的。因而,从这个寓言中引申出的含义是,从一个共同知识的事实推出的结果与从(例如)只知道每个人已经知道每个人已经知道的一个事实推出的结果可以非常不同。
其次,关于“完全信息”的概念。完全信息是博弈论非常重要的基本概念,有了上述的共同知识概念,这里就可以给出完全信息的严格定义。完全信息指的是所有参与者各自选择的行动的不同组合所决定的各参与者的收益对所有参与者来说是共同知识。简单通俗地说,完全信息是指每一个参与者对自己以及其他参与者的行动,以及各参与者选择的行动组合产生的收益等知识有完全的了解。(3)战略。战略是参与者如何对其他参与者的行动作出反应的行动规则,它规定参与者在什么时候该选择什么行动。或者说。战略是参与者“相机行动方案”。
战略是一个与过程有关的概念,行动是与时序无关的动作。打个比方,行动好比拳术中的一招一式,战略就是一招一式构成的套路。(4)收益。在博弈论中,收益指的是在一个特定的战略组合下参与者得到的确定效用或期望效用。效用通常表现为博弈结果中的输赢、得失、盈亏。效用必须能用数值刻画其大小。收益是博弈参与者真正关心的问题。
博弈论的一个基本特征是一个参与者的收益不仅取决于自己的战略选择,而且取决于所有参与者的战略选择。或者说,收益是所有参与者各选定一个战略形成的战略组合的函数。在博弈论中,通常用ui表示参与者i的收益,一个战略组合是,每个参与者的收益可以表示为
均衡是博弈论最重要、最基础的一个概念,对于不同类型、不同条件的博弈问题又形成各种各样特定的均衡的概念,它们构成博弈论五彩缤纷的预测结果。各种均衡在社会经济等不同的领域都展现出广阔的应用前景。读者充分、深刻地理解这些均衡概念是非常重要的。
有了上面完全信息的概念,再结合参与者行动的先后次序的界定,就可以对博弈论的类型作出划分。如果参与者同时选择各自的行动,则这类博弈称为静态的。值得注意的是,这里所说的“同时”具有双层含义。一种含义就是“同时”的字面解释,也就是参与者在同一时间一起行动;另一种含义是参与者行动虽然有先后,但后行动者并不知道先行动者采取了什么具体行动。
动态博弈指的是参与者的行动有先后顺序,并且后行动者能够观察到先行动者所选择的行动。后行动者就可以依据获得的信息,采取自己认为最有力的战略。凭直观理解,完全信息总要比不完全信息要好一些,静态的情形又要比动态的情形要简单一些。如果将信息的完全与不完全、状态的静与动交叉组合,就构成了四种不同类型的博弈。从简单到复杂排列,就是完全信息静态博弈——完全信息动态博弈——不完全信息静态博弈——不完全信息动态博弈。
3、博弈论研究著名学者简介(1)、计算机之父、博弈论创始人——冯·诺伊曼约翰·冯·诺伊曼(JohnVonNeumann,1903—1957),美籍匈牙利人。1921—1923年在苏黎世大学学习。很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺伊曼年仅22岁。冯·诺伊曼是20世纪最优秀的数学家之一,因1946年发明电子计算机而被西方人誉为“计算机之父”。1927—1929年冯·诺伊曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国,1931年成为该校终身教授。他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院的院士。冯·诺伊曼建立了算子代数这门新的数学分支。在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都做过重要的工作。然而,冯·诺伊曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作。冯·诺伊曼于20世纪20年代开始创立博弈理论,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。冯·诺伊曼和摩根斯特恩在该书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。(2)、博弈论大师——纳什
纳什(JohnNash),1928年6月13日出生于美国弗吉尼亚西部的“布鲁菲尔德”(Bluefield),高中毕业后进入卡内基-梅隆大学学习化学工程专业,由于对数学的喜好和天赋,一年后正式转到数学系。在毕业时,他取得数学学士和理学学士两个学位。1950年纳什22岁时通过论文答辩获得普林斯顿大学的博士学位。正是这篇天才论文,奠定了他博弈论大师的地位,并为他铺垫了通向诺贝尔经济学奖的道路。1951年纳什又发表了第二篇题为“非合作博弈”(Non—CooperativeGames,AnnalsofMathematics1951)的论文。在此之前,他还撰写了“讨价还价问题”。1958年《财富》杂志把纳什评为新一代天才数学家中最出色的人物。也许是天妒英才,正当麻省理工学院准备提升他为正教授时,年方30岁的纳什得了严重的“妄想型精神分裂症”,从此他从学术界销声匿迹,饱受精神病的折磨长达30多年。
纳什的主要贡献是1950年和1951年发表的两篇关于非合作博弈论的重要论文,他的研究彻底改变了人们对竞争和市场的看法。1950年纳什发表的“非合作对策”博士论文提出了与诺伊曼的合作对策论相对立的观点。纳什在论文中引入了著名的“纳什均衡”理论,对有混合利益的竞争者之间的对抗进行了数学分析。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,他是继冯·诺伊曼之后最伟大的博弈论大师之一,他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
(3)、动态博弈理论的开创者——泽尔腾泽尔腾(R.Selten)1930年10月10日出生于德国的布雷斯劳(二战后,此地归于波兰),1951—1957年,他在法兰克福大学学习数学。1961年在马恩法兰克福大学获得了数学博士学位。1967—1968年,泽尔腾到加州大学伯克利分校做客座教授,1969—1972年在柏林大学做经济学教授,而后在比勒菲尔德大学工作了12年。1984年泽尔腾离开比勒菲尔德大学,到波恩大学从教,致力于实验经济学的研究。
泽尔腾的主要贡献是在纳什均衡的基础上深入研究了动态博弈问题。泽尔腾通过研究发现,“纳什均衡”概念在实际应用中存在缺陷。纳什均衡的缺陷是,一般情况下能够保证存在性,但不能保证唯一性。大多数情况下纳什均衡有多个,由此带来的问题就是,多个纳什均衡中究竟哪一个才是博弈的理性结局?泽尔腾认为“纳什均衡”概念只适用于分析一些静态的“重复性博弈”,而不适用于分析动态博弈问题。他对“纳什均衡”概念进行了精心的研究,先后提出了两个著名均衡新概念:子博弈完美均衡,颤抖手完美均衡。他采用“逆向归纳法”,在多个纳什均衡中剔除了一些按照一定规则不合理的均衡点,从而形成了纳什均衡的“精炼”概念,在扩展型博弈分析方面取得了重大成果。(4)、不完全信息博弈理论的奠基者——海萨尼
约翰·海萨尼(JohnC.Harsanyi),美国人,由于受到纳什成果的影响,从20世纪50年代开始潜心于博弈论的研究。海萨尼的研究成果非常丰富:(1)在合作博弈论研究上,给出了合作博弈的通解——N人议价模型,建立了一个合作博弈论的非合作博弈模型;(2)在不完全信息博弈研究上,提出了以类型为基础的不完全信息博弈建模方法,引入了贝叶斯技术求解方法,对混合策略进行了重新解释,提出了基于随机变量的变动收益博弈模型;(3)在均衡选择研究上,与泽尔腾合作完成了《博弈论均衡选择的一般理论》。约翰·海萨尼通过多方面的研究将自己的思想构成了一个完整的体系,他提出的不完全信息博弈思想及贝叶斯纳什均衡概念,对博弈论和经济学产生了重大影响。(5)、米尔利斯
詹姆斯·亚历山大·米尔利斯(J.Y.Morlis),出生于1936年7月5日苏格兰柯库布里郡明尼加大。1996年10月8日,由于对不对称信息条件下的激励经济理论做出了基础性贡献,与威廉·维克里分享诺贝尔经济学奖。米尔利斯对不对称信息经济学的贡献包括:在最优所得税机制设计问题上,探讨了政府在面临信息不完全的情况下如何去设计出一种“激励性相容”的最优税收体制,提出了显示原则:解决激励问题的关键是要通过一种与个人利益相容的方式,引导所有人如实表露自己的信息;在最优契约设计问题上,以“委托人一代理人方法”对道德危险问题进行了重新阐述,得出的结论是:为了使代理人有足够的激励去自动选择有利于委托人的行动,就必须在合同的设计中让代理人也承担一部分结果不确定的风险;在信号筛选理论方面,提出了区分不同信号的“斯彭斯一米尔利斯条件”。第二部分、几个经典博弈模型分析
博弈的标准式表述
严格占优战略均衡
逐步剔除严格战略均衡
纳什均衡应用举例
混合战略纳什均衡
纳什均衡的存在性
(一)、博弈的标准式表述
一、博弈的标准式表述与纳什均衡
(二)、严格占优战略均衡
博弈分析的目的是预测博弈的均衡结果。简言之,就是求解博弈问题。这里需要假定“参与者是理性的”是共同知识。经济学对理性的描述是,在给定的约束条件下追求效用最大化。参与者在博弈过程中,在每一步斟酌的取舍(选优剔劣)时,都应依据这个假定行事。一般说来,由于每个参与者的收益是博弈中所有参与者所选战略的函数,因此,每个参与者的最优战略选择必须考虑所有其他参与者的战略选择。但在一些特殊的博弈中,一个参与者的最优战略可能不需要考虑其他参与者如何选择战略,就是说,不论其他参与者选择什么战略,该参与者有唯一一个最优战略,这个最优战略称为严格占优战略。下面给出严格占优战略定义。
显然,在一个博弈问题中,如果所有参与者都有一个严格占优战略,那么每一个理性的参与者谁也不会放弃他的严格占优战略。这样,由全部严格占优战略就构成博弈的解——严格占优战略均衡。
应该指出的是,严格占优战略只要求每个参与者是理性的,而并不要求每个参与者知道其他参与者是理性的(即不要求“理性”是共同知识)。这是因为,不论知道与否,严格占优战略总是一个理性参与者的最佳选择。
值得注意的是,囚徒困境博弈暴露了个人理性与团体理性的冲突问题。因为囚徒1与囚徒2都选择沉默,每人只判刑1个月,这显然要比(坦白,坦白)都判刑6个月有利。(沉默,沉默)不是一个均衡,因为它不满足个人理性的要求。换个角度考虑,即使两个囚徒在被捕前订立了攻守同盟(拒不坦白),这个同盟也没有用,因为没有人会严格遵守同盟协定(这时,只要谁一坦白,他就立即获得释放)。
(三)、逐步剔除严格劣战略均衡
寻求博弈问题的解的过程就是参与者选择战略的过程。选择有两种途径:选优与去劣。上面寻求严格占优战略均衡走的就是选优的路子。下面介绍的逐步剔除严格劣战略寻求均衡走的就是去劣的路子。
研究图2-1所示的一个博弈问题。
这样一来,参与者1就可以将图2-1所示的博弈视同为图2-2所示的博弈。
在图2-2中,对参与者1来说,战略“下”相对于战略“上”是严格劣战略(因为0<1,且0<1)。于是,如果参与者1是理性的(并且参与者1知道参与者2是理性的,原博弈才能简化为图2-2),那么参与者1就不会选择“下”。这时,如果参与者2知道参与者1是理性的,并且参与者2知道参与者1知道参与者2是理性的(只有这样,参与者2知道原博弈已被简化为图2-2所示博弈),那么参与者2就可以把“下”从参与者1的战略空间S1中剔除。
这样一来,参与者2又可以进一步将图2-2所示博弈简化为图2-3所示博弈
那么,图2-4的博弈有没有均衡结果呢?后面我们还会讨论。
另外,严格占优战略均衡和逐步剔除严格劣战略均衡对参与者理性的要求是不同的。前者只要每个参与者是理性的,而后者却要求理性是参与者的共同知识。只有在“参与者2是理性的,且参与者1知道参与者2是理性的”条件下,图2-1的博弈才能简化为图2-2的情形。一共用了三步剔除得到了结果。显然,参与者的战略空间越大,剔除的步骤就越多,对共同知识的要求就越严格。定义在标准式的博弈中,设si'和si″是参与者i的两个可行战略。若下式
类似于运用逐步剔除严格劣战略去寻求一个均衡结果,自然想到运用逐步剔除劣势战略也是求解博弈问题的一种方法。
考察下面图2-5所示的博弈问题。
(四)、纳什(Nash)均衡
纳什均衡是完全信息静态博弈的解的一般概念,它是对非常广泛博弈问题给出更加严格的结果。首先,许多不存在严格占优战略均衡或逐步剔除严格劣战略均衡的博弈,却存在纳什均衡。其次,严格占优战略均衡一定就是博弈问题的惟一的纳什均衡。再者纳什均衡一定不会被逐步剔除严格劣战略所剔除。可以这么说,没有任何一个战略组合严格优于纳什均衡。为了理解纳什均衡的含义,设想博弈理论对一个n个参与者博弈中的每一个参与者选定的一个战略,预测的博弈结果为s*=(s1*,…,si*,…,sn*)。其中,si*是理论上导出的参与者i的战略。首先,理论上确定的每个参与者要选择的战略必须是针对其他参与者选择战略的最优反应。其次,遵循理论结果产生的效用不会小于偏离理论结果时的效用,也就是没有参与者愿意单独偏离理论给他选定的战略,这种理论导出的结果时一种“战略相对稳定”状态。我们就把这种状态称为一个纳什均衡。
和纳什均衡的导出密切相关的是协议的理念。对给定的博弈,如果参与者之间要商定一个协议决定博弈如何进行,那么一个有效的协议中的战略组织必须是纳什均衡的战略组合,否则至少有一个参与者会不遵循该协议。
运用上述定义中不等式(NE)的条件,就可以检查一个特定的战略组合是不是纳什均衡。比如,在囚徒困境中,对参与者1(囚徒1)选s1*=坦白,对参与者2(囚徒2)选s2*=坦白。考察图2-4所示的博弈。
从图2-6可以看出,一个单元中只有一个数值下面划了横线,表明只有一方的战略上针对另一方战略的最优反应,而另一方的战略却表示针对对方战略的最优反应。因此该单元对应的战略组合就不是双方同时愿意接受的结果,因而也就构不成纳什均衡。
通过上面阐述,读者已经接触了各种博弈均衡的概念和寻求均衡结果的方法,现在着重分析一下它们之间的关系。
(1)每一个严格占优战略均衡一定是纳什均衡,反之不然。(2)每一个逐步剔除严格占优战略均衡是纳什均衡,反之不然。
这里就不作严格的论证了。回顾智猪争食博弈和图2-1所示的博弈,对逐步剔除严格劣战略过程和划横线方法寻求纳什均衡的过程的比较,可以领会上述结论的含义。反例可以从图2-6所示博弈看出。s*=(下,右)是纳什均衡,但该博弈逐步剔除严格劣战略却一步也不能施行。(3)如果战略组合是纳什均衡,那么它一定不会被逐步剔除严格劣战略剔除。
成立。这个例子得出的是:(歌剧,歌剧)和(拳击,拳击)都是纳什均衡。这个博弈既不存在严格的占优战略均衡,也不存在逐步剔除严格劣战略均衡。并且对该博弈的两个纳什均衡(歌剧,歌剧)和(拳击,拳击)不论实际实施哪一个均衡结果,总有一方感到有点委屈。遇到这样一类博弈问题,纳什均衡用于预测博弈将任何进行的作用就大大减弱了。二、纳什均衡应用举例
本节集中研究分析经济学中几个博弈问题,这些也是博弈论的经典之作。通过对这些例题的模型的讨论,要达到两个目的:①如何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4月九年级物理教学工作计划范文
- 2024年员工个人工作计划模板
- 高二德育工作计划范本
- 社区健康教育工作思路的工作计划
- 2024年幼儿园党支部工作计划开头范文
- 2024年血库护士上半年工作总结以及下半年工作计划
- 岭南师范学院《普通物理实验(电磁学)》2021-2022学年第一学期期末试卷
- 聊城大学东昌学院《中国现代文学思潮史》2022-2023学年第一学期期末试卷
- 幼儿园中班学年工作计划范文
- 高中教师工作计划个人范文
- 互动墙施工方案
- ASME B16.5-16.47法兰尺寸对照表
- 团支部工作总结考核表
- 开关电源变压器设计工具(详细计算)
- 电阻电路的等效变换习题
- 行政管理办公室服务满意度调查问卷
- 《水浒传》第六十一回好句赏析
- 《世界遗产背景下的影响评估指南和工具包》
- 地理澳大利亚介绍课件
- 气排球教学计划5篇
- 电网检修工程预算定额
评论
0/150
提交评论