专题06 全等三角形常见模型专题探究(原卷版)_第1页
专题06 全等三角形常见模型专题探究(原卷版)_第2页
专题06 全等三角形常见模型专题探究(原卷版)_第3页
专题06 全等三角形常见模型专题探究(原卷版)_第4页
专题06 全等三角形常见模型专题探究(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题06全等三角形常见模型专题探究模型一K型图【知识点睛】K型图模型总结图形条件与结论辅助线注意事项条件:AC=BC,AC⊥BC结论:△ADC≌△CEB(AAS)分别过点A、B作AD⊥l,BE⊥lK型图可以和等腰直角三角板结合,也可以和正方形结合K型全等模型变形——三垂定理:如图,亦有△ADC≌△CEB(AAS)总结:当一个直角放在一条直线上时,常通过构造K型全等来证明边相等,或者边之间的数量关系【类题训练】1.如图,在等腰直角三角形ABC中,AB=BC,∠ABC=90°,点B在直线l上,过A作AD⊥l于D,过C作CE⊥l于E.下列给出四个结论:①BD=CE;②∠BAD与∠BCE互余;③AD+CE=DE.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③2.如图,一块含45°的三角板的一个顶点A与矩形ABCD的顶点重合,直角顶点E落在边BC上,另一顶点F恰好落在边CD的中点处,若BC=12,则AB的长为.3.(2021秋•惠民县月考)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S=.3.如图1,∠ABC=90°,FA⊥AB于点A,D是线段AB上的点,AD=BC,AF=BD.(1)判断DF与DC的数量关系为,位置关系为.(2)如图2,若点D在线段AB的延长线上,过点A在AB的另一侧作AF⊥AB,并截取AF=BD,连接DC,DF,CF,试说明(1)中结论是否成立,并说明理由.4.(2020秋•永年区月考)如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与BC点重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°;(2)当DC等于多少时,△ABD≌△DCE,请说明理由.5.(2022春•锦江区校级期中)已知Rt△ABC和Rt△ADE,AB=AC,AD=AE.连接BD、CE,过点A作AH⊥CE于点H,反向延长线段AH交BD于点F.(1)如图1,当AB=AD时①请直接写出BF与DF的数量关系:BFDF(填“>”、“<”、“=”)②求证:CE=2AF(2)如图2,当AB≠AD时,上述①②结论是否仍然成立?若成立,请证明;若不成立,请说明理由.6.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.模型二手拉手模型【知识点睛】手拉手模型总结图形条件与结论辅助线条件:AD=AE、AB=AC∠BAC=∠DAE结论:△ABD≌△ACE(SAS)BD=CE分别连接BD、CE手拉手模型在第一章只是表面应用,后续深层次应用需要在等腰三角形学完之后探究【类题训练】1.如图,△ABD,△AEC都是等边三角形,则∠BOC的度数是()A.135° B.125° C.120° D.110°2.(2021秋•诸暨市月考)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)线段BD与线段CE的关系为,请说明理由.3.如图,在△ABD中,AD=AB,∠DAB=90°,在△ACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有()A.4个 B.3个 C.2个 D.1个4.(2021秋•长沙期末)如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFB的度数.5.(2021秋•大连期末)在△ABC中,AB=AC,点D是直线BC上一动点(不与B、C重合),将线段AD绕点A逆时针旋转∠BAC的度数,得到线段AE,连接CE,设∠BAC=α,∠BCE=β.(1)如图1,当点D在线段BC上时,用等式表示α与β之间的数量关系,并证明;(2)如图2,当点D在线段CB延长线上时,补全图形,用等式表示α与β之间的数量关系,并证明.6.已知,∠MON=90°,点A在边OM上,点P是边ON上一动点,∠OAP=α.以线段AP为边在AP上方作等边△ABP,连接OB、BP,再以线段OB为边作等边△OBC(点C、P在OB的同侧),作CH⊥ON于点H.(1)如图1,α=60°.①依题意补全图形;②求∠BPH的度数;(2)如图2,当点P在射线ON上运动时,用等式表示线段OA与CH之间的数量关系,并证明.模型三对称全等模型【知识点睛】对称全等模型总结常见基本图形:模型提取:1.对称变换基本特征:必有对称轴2.对称型全等模型常隐含的条件:具有公共边、公共角、有时全等三角形不止一对、对称轴会平分公共角3.全等证明常用解决手段:多想角度间的等量代换方法—角平分线的定义、内角和公式、外角定理等4.其特殊应用环境:角平分线的常见辅助线角平分线基本性质:角平分线上的点到角两边的距离相等(对称类全等经常和角平分线结合,可以考察角平分线的定义,也可以考察角平分线的性质定理)【类题训练】1.(2022•梧州模拟)如图,在△ABC中,∠A=90°,BE是△ABC的角平分线,ED⊥BC于点D,CD=4,△CDE周长为12,则AC的长是()A.14 B.8 C.16 D.62.如图:D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为()A.5 B.4 C.3 D.23.(2020秋•江岸区校级月考)如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折形成的,若∠1:∠2:∠3=13:3:2,CD与BE交于O点,则∠EOC的度数为()A.80° B.85° C.90° D.100°4.如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.5.(2022•嘉兴一模)在①OA=OD,②∠ABC=∠DCB,③∠ABO=∠DCO这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,AC与BD相交于点O,∠1=∠2.若,求证:AB=DC.6.(2021秋•台安县月考)如图,四边形ABCD中,∠B+∠D=180°,∠BCD=150°,CB=CD,M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论