




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省长春市第三中学九年级数学第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A.3 B.4 C.4.8 D.52.若.则下列式子正确的是()A. B. C. D.3.观察下列图形,既是轴对称图形又是中心对称图形的有A.1个 B.2个 C.3个 D.4个4.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.5.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=06.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外7.如图是二次函数y=ax2+bx+c(a≠1)的图象的一部分,给出下列命题:①a+b+c=1;②b>2a;③方程ax2+bx+c=1的两根分别为﹣3和1;④当x<1时,y<1.其中正确的命题是()A.②③ B.①③ C.①② D.①③④8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>09.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A. B. C. D.10.抛物线向右平移4个单位长度后与抛物线重合,若(-1,3)在抛物线上,则下列点中,一定在抛物线上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)11.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为()A. B. C. D.12.抛物线与y轴的交点为()A. B. C. D.二、填空题(每题4分,共24分)13.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.14.长度等于6的弦所对的圆心角是90°,则该圆半径为_____.15.已知两个相似三角形对应中线的比为,它们的周长之差为,则较大的三角形的周长为__________.16.如图,中,ACB=90°,AC=4,BC=3,则_______.17.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.18.如图所示,某河堤的横断面是梯形,,迎水坡长26米,且斜坡的坡度为,则河堤的高为米.三、解答题(共78分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).20.(8分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.21.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.22.(10分)已知二次函数的图象经过三点(1,0),(-6,0)(0,-3).(1)求该二次函数的解析式.(2)若反比例函数的图象与二次函数的图象在第一象限内交于点A(),落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数的图象与二次函数的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.23.(10分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形中,若,则称四边形为准平行四边形.(1)如图①,是上的四个点,,延长到,使.求证:四边形是准平行四边形;(2)如图②,准平行四边形内接于,,若的半径为,求的长;(3)如图③,在中,,若四边形是准平行四边形,且,请直接写出长的最大值.24.(10分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.25.(12分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.26.阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂(问题解决)若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?(数学思考)(3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.
参考答案一、选择题(每题4分,共48分)1、D【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可.【详解】解:由图可得出,整理,得,解得,(不合题意,舍去).故选:D.【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.2、A【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x-7y=0,∴2x=7y.A.,则2x=7y,故此选项正确;B.,则xy=14,故此选项错误;C.,则2y=7x,故此选项错误;D.,则7x=2y,故此选项错误.故选A.【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.3、C【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,∵第一个图形不是轴对称图形,是中心对称图形;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;∴既是轴对称图形又是中心对称图形共有3个.故选C.4、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.5、A【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.6、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.7、B【分析】利用x=1时,y=1可对①进行判断;利用对称轴方程可对②进行判断;利用对称性确定抛物线与x轴的另一个交点坐标为(-3,1),则根据抛物线与x轴的交点问题可对③进行判断;利用抛物线在x轴下方对应的自变量的范围可对④进行判断.【详解】∵x=1时,y=1,∴a+b+c=1,所以①正确;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,所以②错误;∵抛物线与x轴的一个交点坐标为(1,1),而抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,1),∴方程ax2+bx+c=1的两根分别为﹣3和1,所以③正确;当﹣3<x<1时,y<1,所以④错误.故选:B.【点睛】本题考查的是抛物线的性质及对称性,掌握二次函数的性质及其与一元二次方程的关系是关键.8、B【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】14400000=1.44×1.故选:A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、A【分析】利用点的平移进行解答即可.【详解】解:∵抛物线向右平移4个单位长度后与抛物线重合∴将(-1,3)向右平移4个单位长度的点在抛物线上∴(3,3)在抛物线上故选:A【点睛】本题考查了点的平移与函数平移规律,掌握点的规律是解题的关键.11、A【分析】根据,求得m=3或−1,根据当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断m=-1符合题意,然后把x=0代入解析式求得y的值.【详解】解:∵,∴m=3或−1,∵二次函数的对称轴为x=m,且二次函数图象开口向下,又∵当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,∴−1≤m≤0∴m=-1符合题意,∴二次函数为,当x=0时,y=1.故选:A【点睛】本题考查了二次函数的性质,根据题意确定m=-1是解题的关键.12、C【解析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,
∴抛物线与y轴的交点为(0,3),
故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.二、填空题(每题4分,共24分)13、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【详解】画树状图图如下:∴一共有20种情况,有6种情况两次都摸到红球,∴两次都摸到红球的概率是.故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14、1【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=1,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:1.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.15、15【分析】利用相似三角形对应中线的比可得出对应周长的比,根据周长之差为10即可得答案.【详解】设较小的三角形的周长为x,∵两个相似三角形对应中线的比为1:3,∴两个相似三角形对应周长的比为1:3,∴较大的三角形的周长为3x,∵它们的周长之差为10,∴3x-x=10,解得:x=5,∴3x=15,故答案为:15【点睛】本题考查相似三角形的性质,相似三角形对应中线、高、周长的边都等于相似比;面积比等于相似比的平方.16、【分析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A=.故答案为.【点睛】本题考查了解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.17、1.【详解】解:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案为1.点睛:同一时刻,物体的高度与影长的比相等.18、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米).考点:解直角三角形的应用.三、解答题(共78分)19、(1)画图见解析;(2)点B所经过的路径长为.【解析】(1)让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.
(2)旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.【详解】(1)如图.(2)由(1)知这段弧所对的圆心角是90°,半径AB==5,∴点B所经过的路径长为.【点睛】本题主要考查了作旋转变换图形,勾股定理,弧长计算公式,熟练掌握旋转的性质和弧长的计算公式是解答本题的关键.20、(1),;(2)【分析】(1)
根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠
ADB,由等角对等边可得出;
(2)
过点B作BE∥
AD交AC于点E,同(1)
可得出AE,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1),.又,.,故答案为:;.(2)过点作交于点,如图所示.,.,在中,,即,解得:在中,.【点睛】本题考查了平行线的性质、相似三角形性质及勾股定理,构造相似三角形是解题的关键,利用勾股定理进行计算是解决本题的难点.21、(1)y=x+3,y=﹣x2﹣2x+3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,)【分析】(1)首先由题意根据抛物线的对称性求得点B的坐标,然后利用交点式,求得抛物线的解析式;再利用待定系数法求得直线的解析式;(2)首先利用勾股定理求得BC,PB,PC的长,然后分别从点B为直角顶点、点C为直角顶点、点P为直角顶点去分析求解即可求得答案.【详解】解:(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),抛物线与x轴的另一交点为B,∴B的坐标为:(﹣3,0),设抛物线的解析式为:y=a(x﹣1)(x+3),把C(0,3)代入,﹣3a=3,解得:a=﹣1,∴抛物线的解析式为:y=﹣(x﹣1)(x+3)=﹣x2﹣2x+3;把B(﹣3,0),C(0,3)代入y=mx+n得:,解得:,∴直线y=mx+n的解析式为:y=x+3;(2)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2,即:18+4+t2=t2﹣6t+10,解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2,即:18+t2﹣6t+10=4+t2,解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2,即:4+t2+t2﹣6t+10=18,解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点睛】本题考查二次函数的图象与性质,数形结合思想解题是本题的解题关键.22、(1);(2)1与2;(3)【分析】(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式;(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的的值,进而可写出所求的两个正整数即可;(3)点B的横坐标为m,满足3<m<4,可通过m=3,m=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.【详解】解:(1)∵二次函数图像经过(1,0),(-6,0),(0,-3),∴设二次函数解析式为,将点(0,3)代入解析式得,∴;∴,即二次函数解析式为;(2)如图,根据二次函数与反比例函数在第一象限的图像可知,当时,有;当时,有,故两函数交点的横坐标落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)根据函数图像性质可知:当时,对,随着的增大而增大,对,随着的增大而减小,∵点B为二次函数与反比例函数交点,∴当时,,即,解得,同理,当时,,即,解得,∴的取值范围为;【点睛】本题主要考查了二次函数和反比例函数综合应用,掌握二次函数,反比例函数是解题的关键.23、(1)见解析;(2);(3)【分析】(1)先根据同弧所对的圆周角相等证明三角形ABC为等边三角形,得到∠ACB=60°,再求出∠APB=60°,根据AQ=AP判定△APQ为等边三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判断∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可证四边形是准平行四边形;(2)根据已知条件可判断∠ABC≠∠ADC,则可得∠BAD=∠BCD=90°,连接BD,则BD为直径为10,根据BC=CD得△BCD为等腰直角三角形,则∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函数求出BC的长,过B点作BE⊥AC,分别在直角三角形ABE和△BEC中,利用三角函数和勾股定理求出AE、CE的长,即可求出AC的长.(3)根据已知条件可得:∠ADC=∠ABC=60°,延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),连接BO交弧AE于D点,则此时BD的长度最大,根据已知条件求出BO、OD的长度,即可求解.【详解】(1)∵∴∠ABC=∠BAC=60°∴△ABC为等边三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ为等边三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四边形是准平行四边形(2)连接BD,过B点作BE⊥AC于E点∵准平行四边形内接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD为的直径∵的半径为5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四边形是准平行四边形,且∴∠ADC=∠ABC=60°延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,因为∠ACE=90°,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),此时,∠ADC=∠AEC=60°,连接BO交弧AE于D点,则此时BD的长度最大.在等边三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD长的最大值为2+【点睛】本题考查的是新概念及圆的相关知识,理解新概念的含义、掌握圆的性质是解答的关键,本题的难点在第(3)小问,考查的是与圆相关的最大值及最小值问题,把握其中的不变量作出圆是关键.24、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,,∴当时,的面积有最大值,最大值是,此时点坐标为.(2)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,∵,,∴,,∴,∵,∴,∴,∵、关于轴对称,∴,∴,此时最小,∵,,∴,∴.∴的最小值是2.【点睛】主要考查了二次函数的平移和待定系数法求函数的解析式、二次函数的性质、相似三角形的判定与性质、锐角三角函数的有关计算和利用对称的性质求最值问题.解(1)题的关键是熟练掌握待定系数法和相关点的坐标的求解;解(2)题的关键是灵活应用二次函数的性质求解;解(2)题的关键是作关于轴的对称点,灵活应用对称的性质和锐角三角函数的知识,学会利用数形结合的思想和转化的数学思想把求的最小值转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题09抛物线与平面向量的交汇问题(原卷版)-高考数学圆锥曲线部分必会十大基本题型
- 2023-2029年中国一次性使用吸痰管行业市场发展监测及投资战略咨询报告
- 2024-2025学年高中历史第八单元19世纪以来的世界文学艺术第23课美术的辉煌课时作业含解析新人教版必修3
- 2024-2025学年高中政治第四单元认识社会与价值选择第十二课实现人生的价值第1课时价值与价值观学案新人教版必修4
- 2024-2025学年高中英语Unit16Stories核心素养拓展练含解析北师大版选修6
- 2024-2025学年高中语文专题一小说家想说些什么第2课春风沉醉的晚上知能优化演练苏教版选修短篇小说蚜
- 2025年核桃壳过滤器项目可行性研究报告
- 金莲花颗粒行业深度研究报告
- 2025年轮椅升降机项目投资可行性研究分析报告
- 节能低碳印刷基地项目节能分析报告
- GB 19522-2004车辆驾驶人员血液、呼气酒精含量阈值与检验
- 登记总账、账务处理程序课件
- 热能与动力工程测试技术(白)课件
- 彩生活运营模式2016年
- 脂肪肝的科普课件
- 某银行安全保卫工作知识考试参考题库(500题)
- 片剂工艺流程图
- 企业服务工作实施方案
- 信息技术ppt课件完整版
- 新湘教(湖南美术)版小学美术五年级下册全册PPT课件(精心整理汇编)
- 大智慧指标公式函数大全(完整可打印版)
评论
0/150
提交评论