2024届广东省恩平市数学九上期末学业质量监测试题含解析_第1页
2024届广东省恩平市数学九上期末学业质量监测试题含解析_第2页
2024届广东省恩平市数学九上期末学业质量监测试题含解析_第3页
2024届广东省恩平市数学九上期末学业质量监测试题含解析_第4页
2024届广东省恩平市数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省恩平市数学九上期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°2.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同3.是四边形的外接圆,平分,则正确结论是()A. B. C. D.4.在一个不透明的口袋中装有个完全相同的小球,把它们分别标号为,从中随机摸出一个小球,其标号小于的概率为()A. B. C. D.5.若,则的值为()A. B. C. D.﹣6.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(

)A.9分 B.8分 C.7分 D.6分7.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5 B.﹣1 C.2﹣ D.8.某超市花费1140元购进苹果100千克,销售中有的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为元/千克,根据题意所列不等式正确的是()A. B.C. D.9.把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是()A.y=-3 B.y=+3 C.y= D.y=10.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)12.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数的图象相交于点和点,则关于x的不等式的解集是_____.13.已知关于x的方程有两个实数根,则实数k的取值范围为____________.14.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.15.若是关于的方程的一个根,则的值为_________________.16.一个圆锥的底面圆的半径为3,母线长为9,则该圆锥的侧面积为__________.17.如图,在正方形网格中,每个小正方形的边长都是1,的每个顶点都在格点上,则_____.18.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.三、解答题(共66分)19.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.20.(6分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.21.(6分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.22.(8分)如图,已知是的直径,弦于点,是的外角的平分线.求证:是的切线.23.(8分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.(1)求证:;(2)如图2,交于点,若,点共线,其他条件不变,①判断四边形的形状,并说明理由;②当,,且四边形是正方形时,直接写出的长.24.(8分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.(1)当售价为万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.25.(10分)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.26.(10分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出时的x的取值范围(只写答案)

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.2、D【解析】分析:必然事件指在一定条件下一定发生的事件,据此解答即可.详解:A.打开电视,它正在播广告是随机事件;B.抛掷一枚硬币,正面朝上是随机事件;C.打雷后下雨是随机事件;D.∵一年有365天,∴367人中有至少两个人的生日相同是必然事件.故选D.点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、B【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.【详解】解:与的大小关系不确定,与不一定相等,故选项A错误;平分,,,故选项B正确;与的大小关系不确定,与不一定相等,选项C错误;∵与的大小关系不确定,选项D错误;故选B.【点睛】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4、C【分析】直接利用概率公式求解即可求得答案.【详解】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,

其中小于的3个,∴从中随机摸出一个小球,其标号小于4的概率为:故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5、C【分析】将变形为﹣1,再代入计算即可求解.【详解】解:∵,∴=﹣1=﹣1=.故选:C.【点睛】考查了比例的性质,解题的关键是将变形为.6、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、C【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【详解】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【点睛】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8、A【分析】根据“为避免亏本”可知,总售价≥总成本,列出不等式即可.【详解】解:由题意可知:故选:A.【点睛】此题考查的是一元一次不等式的应用,掌握实际问题中的不等关系是解决此题的关键.9、B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x2向上平移3个单位,∴平移后的抛物线的解析式为:y=x2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.10、D【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.二、填空题(每小题3分,共24分)11、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S12=S1.故答案为:=.【点睛】本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.12、-6<x<0或x>2;【解析】观察一次函数和反比例函数图象,一次函数比反比例函数高的部分就是所求.【详解】解:本题初中阶段只能用数形结合,由图知-6<x<0或x>2;点睛:利用一次函数图象和反比例函数图象性质数形结合解不等式:形如式不等式,构造函数,=,如果,找出比,高的部分对应的x的值,,找出比,低的部分对应的x的值.13、【分析】根据一元二次方程有两个实数根,可知,列不等式即可求出k的取值范围.【详解】∵关于x的方程有两个实数根∴解得故答案为:.【点睛】本题考查根据一元二次方程根的情况求参数,解题的关键是掌握判别式与一元二次方程根的情况之间的关系.14、1.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为1.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.15、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.【详解】解:∵x=2是方程的一个根,∴,解得,a=.故答案为:.【点睛】本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.16、【分析】先求出底面圆的周长,然后根据扇形的面积公式:即可求出该圆锥的侧面积.【详解】解:底面圆的周长为,即圆锥的侧面展开后的弧长为,∵母线长为9,∴圆锥的侧面展开后的半径为9,∴圆锥的侧面积故答案为:【点睛】此题考查的是求圆锥的侧面积,掌握扇形的面积公式:是解决此题的关键.17、2【分析】如图,取格点E,连接EC.利用勾股定理的逆定理证明∠AEC=90°即可解决问题.【详解】解:如图,取格点E,连接EC.易知AE=,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠BAC=.【点睛】本题考查解直角三角形,勾股定理以及逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.三、解答题(共66分)19、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.20、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.21、(1);(2)(3)存在,(m为点P的横坐标)当m=时,【分析】(1)把A、B坐标代入二次函数解析式,求出a、b,即可求得解析式;(2)根据第(1)问求出的函数解析式可得出C点的坐标,根据C、P两点横坐标一样可得出P点的坐标,将△BCE的面积分成△PCE与△PCB,以PC为底,即可求出△BCE的面积.(3)设动点P的坐标为(m,m+2),点C的坐标为(m,),表示出PC的长度,根据,构造二次函数,然后求出二次函数的最大值,并求出此时m的值即可.【详解】解:(1)∵A()和B(4,6)在抛物线y=ax2+bx+6上,∴解得:,∴抛物线的解析式;(2)∵二次函数解析式为,∴顶点C坐标为,∵PC⊥x,点P在直线y=x+2上,∴点P的坐标为,∴PC=6;∵点E为直线y=x+2与x轴的交点,∴点E的坐标为∵=∴.(3)存在.设动点P的坐标是,点C的坐标为,∵∴∵,∴函数开口向下,有最大值∴当时,△ABC的面积有最大值为.【点睛】本题考查二次函数的综合应用.(1)中考查利用待定系数发求函数解析式,注意求出函数解析式后要再验算一遍,因为第一问的结果涉及后面几问的计算,所以一定要保证正确;(2)中考查三角形面积的计算,坐标系中三角形面积要以坐标轴或者平行于坐标轴的边为底,如果没有的话要利用割补法进行计算;(3)在(2)的基础上,求动点形成的三角形面积的最值,要设动点的坐标,然后构造相应的函数解析式,再分析最值.22、见解析【分析】根据垂径定理可证明∠BAD=∠CAD,再结合角平分线的性质可得∠DAM=∠DAF,由此可证明∠OAM=90°,即可证明AM是的切线.【详解】证明:∵AB⊥CD,AB是⊙O的直径,∴,∴∠BAD=∠CAD,∵AM是∠DAF的角平分线,∴∠DAM=∠DAF,∵,∴∠OAM=∠BAD+∠DAM=90°,∴OA⊥AM,∴AM是⊙O的切线,【点睛】本题考查切线的判定定理,垂径定理,圆周角定理.理解“经过半径的外端且垂直于这条半径的直线是圆的切线”是解决此题的关键.23、(1)证明见解析;(2)①四边形是矩形.理由见解析;②.【分析】(1)根据,得到,,再证,方法一:通过证明,,从而四边形是平行四边形,,所以为矩形.方法二:证明方法三:证,,.【详解】(1)∵,∴,.∴,,即..∴.(2)①四边形是矩形.理由如下:方法一:由(1)知,.∴.∵,∴.∴.∴.∵,∴,.∴,,即.∴.∴.∵.∴.∴.∴.∴.∴四边形是平行四边形.∵,,点共线,∴.∴四边形是矩形.方法二:如图由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴.∴.∴.∵,∴,即.∴.∵,∴,∴,,即.∴,∴.∵,,点共线,∴.∴,.∴,即.∴.∵,,∴四边形是矩形.方法三:由(1)知,.∴.∵,∴.∴.∴.由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴,∴.∴.∵,∴,即.∴.∵,∴.∴四边形是矩形.②【点睛】本题主要考查了相似三角形的性质以及矩形的性质.24、(1)(2)万元【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x的值,进而得到每辆汽车的售价.【详解】(1)由题意,可得当售价为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论