




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年浙江省乐清育英学校九年级数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平行四边形中,为延长线上一点,且,连接交于,则△与△的周长之比为()A.9:4 B.4:9C.3:2 D.2:32.下列一元二次方程中,没有实数根的是()A. B.C. D.3.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y24.平面直角坐标系内一点P(2,-3)关于原点对称点的坐标是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)5.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5) B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小 D.图象与x轴的两个交点之间的距离为56.小明沿着坡度为的山坡向上走了,则他升高了()A. B. C. D.7.若关于x的一元二次方程有实数根,则实数k的取值范围是()A. B. C.且 D.8.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数9.方程的根是()A. B. C., D.,10.已知关于的一元二次方程有一个根是-2,那么的值是()A.-2 B.-1 C.2 D.1011.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:512.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A. B.C. D.二、填空题(每题4分,共24分)13.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.14.如图,正方形的边长为,在边上分别取点,,在边上分别取点,使.....依次规律继续下去,则正方形的面积为__________.15.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.16.抛物线y=2x2+4x-1向右平移_______个单位,经过点P(4,5).17.如图,在四边形ABCD中,AD∥BC∥EF,EF分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是_____.18.四边形ABCD与四边形位似,点O为位似中心.若,则________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC.(1)若以点A为圆心的圆与边BC相切于点D,请在下图中作出点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边AC相交于点E,连接DE,当∠BAC=100°时,求∠AED的度数.20.(8分)如图,抛物线与轴交于、两点,与轴交于点,且,.(1)求抛物线的解析式;(2)已知抛物线上点的横坐标为,在抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.21.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)22.(10分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.求证:是的切线;已知的半径是.①若是的中点,,则;②若,求的长.23.(10分)学校要在教学楼侧面悬挂中考励志的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为,点C的仰角为,求标语牌BC的宽度(结果保留根号)
24.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.25.(12分)已知关于x的一元二次方程.(1)若是方程的一个解,写出、满足的关系式;(2)当时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的、的值,并求出此时方程的根.26.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.
参考答案一、选择题(每题4分,共48分)1、C【分析】由题意可证△ADF∽△BEF可得△ADF与△BEF的周长之比=,由可得,即可求出△ADF与△BEF的周长之比.【详解】∵四边形ABCD是平行四边形,∴,AD=BC,∵∴即∵,∴△ADF∽△BEF∴△ADF与△BEF的周长之比=.故选:C.【点睛】本题考查了相似三角形的性质和判定,平行四边形的性质,利用相似三角形周长的比等于相似比求解是解本题的关键.2、A【解析】试题分析:A.∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B.∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C.∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D.∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.考点:根的判别式.3、C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.4、C【解析】略5、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.6、A【分析】根据题意作出图形,然后根据坡度为1:2,设BC=x,AC=2x,根据AB=1000m,利用勾股定理求解.【详解】解:根据题意作出图形,∵坡度为1:2,∴设BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形然后求解.7、C【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为1.【详解】∵关于x的一元二次方程有实数根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵关于x的一元二次方程kx2-2x+1=1中k≠1,故选:C.【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.8、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.9、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.10、C【分析】根据一元二次方程的解的定义,将x=−1代入关于x的一元二次方程,列出关于a的一元一次方程,通过解方程即可求得a的值.【详解】根据题意知,x=−1是关于x的一元二次方程的根,∴(−1)1+3×(−1)+a=0,即−1+a=0,解得,a=1.故选:C.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.11、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.12、D【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.
D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;
故选D.二、填空题(每题4分,共24分)13、4+或4﹣【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如图2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.综上所述,BC的长是4+或4﹣.故答案为:4+或4﹣.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.14、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面积,同理可求出正方形A2B2C2D2的面积,得出规律即可得答案.【详解】∵正方形ABCD的边长为a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面积为a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面积为()2a2,……∴正方形的面积为()na2,故答案为:()na2【点睛】本题考查正方形的性质及勾股定理,正确计算各正方形的面积并得出规律是解题关键.15、1【分析】根据题意求出△ABC的周长,根据相似三角形的性质列式计算即可.【详解】解:设△DEF的周长别为x,△ABC的三边长分别为4、5、6,∴△ABC的周长=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.16、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值.【详解】,设抛物线向右平移个单位,得到:,∵经过点(4,5),
∴,化简得:,∴
解得:或.
故答案为:或.【点睛】本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.17、3【解析】首先得出△AEM∽△ABC,△CFM∽△CDA,进而利用相似三角形的性质求出即可.【详解】∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴AMAC设AM=2x,则AC=5x,故MC=3x,∴CMAC故答案为:35【点睛】此题主要考查了相似三角形的判定与性质,得出AMAC18、1∶3【解析】根据四边形ABCD与四边形位似,,可知位似比为1:3,即可得相似比为1:3,即可得答案.【详解】∵四边形与四边形位似,点为位似中心.,∴四边形与四边形的位似比是1∶3,∴四边形与四边形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案为1∶3.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.三、解答题(共78分)19、(1)详见解析;(2)65°.【分析】(1)分析题干可知:作AD⊥BC,由于AB=AC,由等腰三角形的性质可知当AD平分∠BAC即可满足:以点A为圆心的圆与边BC相切于点D;(2)由AD平分∠BAC,可得由圆A半径相等AD=AE,可得∠ADE=∠AED,即可得出答案.【详解】解:(1)如图所示,点D为所求(2)如图:∵AD平分∠BAC∴在中,AD=AE,∴∠ADE=∠AED∴【点睛】本题考查作图,切线的判定和性质等知识,掌握圆的基本性质是解题的关键.20、(1);(2)存在,点.【分析】(1)由题意先求出A、C的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化,BD的长是定值,要使的周长最小则有点、、在同一直线上,据此进行分析求解.【详解】解:(1),点的坐标为.,点的坐标为.把,代入,得,解得.抛物线的解析式为.(2)存在.把代入,解得,,点的坐标为.点的横线坐标为.故点的坐标为.如图,设是抛物线对称轴上的一点,连接、、、,,的周长等于,又的长是定值,点、、在同一直线上时,的周长最小,由、可得直线的解析式为,抛物线的对称轴是,点的坐标为,在抛物线的对称轴上存在点,使得的周长最小.【点睛】本题考查二次函数图像性质的综合问题,熟练掌握并利用利用待定系数法即可求出二次函数的解析式以及运用数形结合思维分析是解题的关键.21、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.22、(1)详见解析;(2)①;②【分析】(1)延长交于,连接.得出,再利用角之间的关系可得出,即,结论即可得证.(2)①利用勾股定理即可求解②由知,,根据对应线段成比例,可得出AB,AD的值,从而可求出AI的长.【详解】解:(1)证明:延长交于,连接.是的内心,平分平分...又,....为的切线.①∵∴.②解:由知,..∴.【点睛】本题考查的知识点有圆的切线的判定定理,相似三角形的判定与性质,综合性较强,利用数形结合的方法可以更好的理解题目,有助于找出解题的方向.23、BC=【分析】根据正切的定义求出,根据等腰直角三角形的性质求出,结合图形计算,得到答案.【详解】解:由题意知,PD=20,,在中,,则,在中,,,,故答案为:.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同范本无线覆盖
- 俱乐部充值会员合同范本
- 果园土地流转合同范本
- 私人间清账合同范本
- 桌椅转让托管合同范本
- 学习雷锋好榜样
- 202520监控系统设备购销合同范本
- 2025合同解除与诉讼时效
- 2025园林景观建设合同范本
- 毕业答辩新拟态风模板
- 中药房中药斗谱编排规则和斗谱图
- TY/T 1105-2023群众体育赛事活动安全评估技术导则
- 半自动打包机维修手册
- 侵权责任法各章课件
- 注册建造师考前培训项目管理丁士昭
- 职业健康职业卫生检查和处理记录
- 谈判:如何在博弈中获得更多
- 深化安全风险管理的“四维度量”
- 隧道地表注浆施工技术交底
- GB/T 8905-2012六氟化硫电气设备中气体管理和检测导则
- GB/T 39430-2020高可靠性齿轮毛坯技术要求
评论
0/150
提交评论