2023年苏州市昆山市数学九年级第一学期期末达标检测模拟试题含解析_第1页
2023年苏州市昆山市数学九年级第一学期期末达标检测模拟试题含解析_第2页
2023年苏州市昆山市数学九年级第一学期期末达标检测模拟试题含解析_第3页
2023年苏州市昆山市数学九年级第一学期期末达标检测模拟试题含解析_第4页
2023年苏州市昆山市数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年苏州市昆山市数学九年级第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.22.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<13.二次函数y=3(x-2)2-1的图像顶点坐标是()A.(-2,1) B.(-2,-1) C.(2,1) D.(2,-1)4.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A. B.C. D.5.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)6.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2 B.等于 C.等于 D.无法确定7.如图,半径为3的经过原点和点,是轴左侧优弧上一点,则为()A. B. C. D.8.若一个圆锥的底面积为,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为()A. B. C. D.9.下列说法中,不正确的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等边三角形都相似 D.有一个角是100°的两个等腰三角形相似10.如图,,垂足为点,,,则的度数为()A. B. C. D.11.设A(x1,y1)、B(x2,y2)是反比例函数图象上的两点.若x1<x2<0,则y1与y2之间的关系是(

)A.y1<y2<0

B.y2<y1<0

C.y2>y1>0

D.y1>y2>012.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.14.二次函数的顶点坐标是___________.15.已知两个相似三角形与的相似比为1.则与的面积之比为________.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.17.比较大小:_____1.(填“>”、“=”或“<”)18.在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,tan∠BPC=_______________.三、解答题(共78分)19.(8分)在二次函数的学习中,教材有如下内容:小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探究方程的近似解,做法如下:请你选择小聪或小明的做法,求出方程的近似解(精确到0.1).20.(8分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.21.(8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.22.(10分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.23.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是__________,位置关系是__________;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.24.(10分)如图,在四边形中,,与交于点,点是的中点,延长到点,使,连接,(1)求证:四边形是平行四边形;(2)若,,,求四边形的面积.25.(12分)已知抛物线y=x2+mx﹣10与x轴的一个交点是(﹣,0),求m的值及另一个交点坐标.26.已知关于的一元二次方程(为实数且).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都是整数,求正整数的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.2、A【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3、D【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),

∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).

故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).4、B【分析】由题意根据增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,进而即可得出方程.【详解】解:设该厂五、六月份平均每月的增长率为x,那么得五、六月份的产量分别为50(1+x)、50(1+x)2,根据题意得50+50(1+x)+50(1+x)2=1.故选:B.【点睛】本题考查由实际问题抽象出一元二次方程的增长率问题,注意掌握其一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量,x为增长率.5、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.6、B【解析】如图分别过D作DE⊥Y轴于E,过C作CF⊥Y轴于F,则△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面积比=OD:DB=1:9即又∴∴解得K=故选B7、B【分析】连接CA与x轴交于点D,根据勾股定理求出OD的长,求出,再根据圆心角定理得,即可求出的值.【详解】设与x轴的另一个交点为D,连接CD∵∴CD是的直径∴在中,,根据勾股定理可得∴根据圆心角定理得∴故答案为:B.【点睛】本题考查了三角函数的问题,掌握圆周角定理、勾股定理、锐角三角函数的定义是解题的关键.8、C【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】解:∵圆锥的底面积为4πcm2,

∴圆锥的底面半径为2cm,

∴底面周长为4π,

圆锥的高为4cm,

∴由勾股定理得圆锥的母线长为6cm,

设侧面展开图的圆心角是n°,

根据题意得:=4π,

解得:n=1.

故选:C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9、A【分析】根据相似多边形的定义,即可得到答案.【详解】解:A、所有的菱形都相似,错误;B、所有的正方形都相似,正确;C、所有的等边三角形都相似,正确;D、有一个角是100°的两个等腰三角形相似,正确;故选:A.【点睛】本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键.10、B【解析】由平行线的性质可得,继而根据垂直的定义即可求得答案.【详解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故选B.【点睛】本题考查了垂线的定义,平行线的性质,熟练掌握相关知识是解题的关键.11、B【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x1<0即可得出结论.【详解】∵反比例函数中,k=1>0,∴函数图象的两个分支位于一、三象限,且在每一象限内y随x的增大而减小,∵x1<x1<0,

∴0>y1>y1.故选:B【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12、C【解析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题(每题4分,共24分)13、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.【详解】∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴∴点C的坐标为(6,2),∵点O的对应点C恰好落在反比例函数y=的图象上,

∴k=2,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.14、【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),直接求二次函数的顶点坐标即可.【详解】∵是顶点式,∴顶点坐标是.故答案为:【点睛】本题考查了二次函数的性质,熟练掌握顶点式是解题的关键.15、2【分析】根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的相似比为1,

∴这两个三角形的面积之比为2.

故答案为:2.【点睛】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.16、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.17、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.18、【详解】试题分析:如图,过点A作AH⊥BC于点H,∵AB=AC,∴AH平分∠BAC,且BH=BC=4.又∵∠BPC=∠BAC,∴∠BAH=∠BPC.∴tan∠BPC=tan∠BAH.在Rt△ABH中,AB=5,BH=4,∴AH=1.∴tan∠BAH=.∴tan∠BPC=.考点:1.等腰三角形的性质;2.锐角三角函数定义;1.转化思想的应用.三、解答题(共78分)19、(1)详见解析,,,.(2)详见解析,,,.【分析】分别按照小聪和小明的作法列表,描点,连线画出图象然后找近似值即可.【详解】解法:选择小聪的作法,列表并作出函数的图象:…-1012………根据函数图象,得近似解为,,.解法2:选择小明的作法,列表并作出函数和的图象:…-10123…………-2-112………根据函数图象,得近似解为,,.【点睛】本题主要考查根据函数图象求方程的近似解,能够画出函数图象是解题的关键.20、(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据,利用两角分别相等的两个三角形相似即可证得结果;(2)利用相似三角形对应边成比例结合等腰直角三角形的性质可得,,,从而求得结果;(3)根据两角分别相等的两个三角形相似,可证得,求得,由可得,从而证得结论.【详解】(1)∵,,∴又,∴∴又∵,∴(2)∵∴在中,,∴∴,∴(3)如图,过点作,,交、于点,,∴,,,∵∴,∴,又∵∴,∴,∴,即,∴∵,∴.∴∴.即:.【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.21、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)设BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE为△ABC的中位线,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直径,∴DA与⊙O相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.22、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;

(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【详解】(1)连接AO并延长交⊙O于点E,连接EC.∵AE是直径,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切线,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.∵∠BCD=90°,∴BD是⊙O的直径,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半径为1.【点睛】本题考查切线的性质,垂径定理,圆周角定理推论,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用转化的思想思考问题.23、(1)FG=CE,FG∥CE;(2)成立,理由见解析.【解析】(1)结论:FG=CE,FG∥CE,如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可;(2)结论仍然成立,如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【详解】(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论