2023年四川省泸州市龙马潭区金龙中学九年级数学第一学期期末监测模拟试题含解析_第1页
2023年四川省泸州市龙马潭区金龙中学九年级数学第一学期期末监测模拟试题含解析_第2页
2023年四川省泸州市龙马潭区金龙中学九年级数学第一学期期末监测模拟试题含解析_第3页
2023年四川省泸州市龙马潭区金龙中学九年级数学第一学期期末监测模拟试题含解析_第4页
2023年四川省泸州市龙马潭区金龙中学九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年四川省泸州市龙马潭区金龙中学九年级数学第一学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,PA、PB都是⊙O的切线,切点分别为A、B.四边形ACBD内接于⊙O,连接OP则下列结论中错误的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB2.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个 B.8个 C.9个 D.12个3.如图,D是△ABC的边BC上一点,已知AB=4,AD=1.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.12a C.13a D.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a-b+c>0;④m>-2,其中,正确的个数有A.1个 B.2个 C.3个 D.4个5.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C. D.6.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.7.将二次函数化成顶点式,变形正确的是:()A. B. C. D.8.如图图形中,是中心对称图形的是()A. B. C. D.9.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B.C. D.10.如图,以点A为中心,把△ABC逆时针旋转m°,得到△AB′C′(点B、C的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为()A. B. C. D.11.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.12.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.14.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.15.已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是_____.16.已知实数,是方程的两根,则的值为________.17.九年级8班第一小组名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则的值是___.18.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,恰好能与△ACP′完全重合,如果AP=8,则PP′的长度为___________.三、解答题(共78分)19.(8分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.20.(8分)江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率.(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.21.(8分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.22.(10分)已知:如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式;(2)如图,点是线段上方抛物线上的一个动点,连结、.设的面积为.点的横坐标为.①试求关于的函数关系式;②请说明当点运动到什么位置时,的面积有最大值?③过点作轴的垂线,交线段于点,再过点做轴交抛物线于点,连结,请问是否存在点使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.23.(10分)解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.24.(10分)解方程:(1)x2﹣2x﹣3=0(2)2x2﹣x﹣1=025.(12分)如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.26.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?

参考答案一、选择题(每题4分,共48分)1、D【分析】连接,,根据PA、PB都是⊙O的切线,切点分别为A、B,得到,,所以A,C正确;根据得到,即,所以B正确;据此可得答案.【详解】解:如图示,连接,,、是的切线,,,所以A,C正确;又∵,,∴在四边形APBO中,,即,所以B正确;∵D为任意一点,无法证明,故D不正确;故选:D.【点睛】本题考查了圆心角和圆周角,圆的切线的性质和切线长定理,熟悉相关性质是解题的关键.2、C【分析】设有x个队参赛,根据题意列出方程即可求出答案即可解决.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.【点睛】本题考查了一元二次方程的应用,解决本题的关键是正确理解题意,找到题意中蕴含的等量关系.3、C【详解】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=1,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为13a故选C.【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.4、C【详解】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故③选项正确;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选C.考点:二次函数图象与系数的关系.5、C【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.【详解】∵抛物线与轴交于、两点∴A(-4,0),B(4,0),即OA=4.在直角三角形COB中BC=∵Q是AP上的中点,O是AB的中点∴OQ为△ABP中位线,即OQ=BP又∵P在圆C上,且半径为2,∴当B、C、P共线时BP最大,即OQ最大此时BP=BC+CP=7OQ=BP=.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.6、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、A【分析】将化为顶点式,再进行判断即可.【详解】故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程的顶点式表示形式是解题的关键.8、D【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.9、B【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【详解】解:根据题意可得,2018年的产量为50(1+x),

2019年的产量为50(1+x)(1+x)=50(1+x)2,

即所列的方程为:50(1+x)2=1.

故选:B.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.10、B【分析】根据旋转的性质可得、,利用等腰三角形的性质可求得,再根据平行线的性质得出,最后由角的和差得出结论.【详解】解:∵以点为中心,把逆时针旋转,得到∴,∴∵∴∴故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差.11、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.12、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,

∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比二、填空题(每题4分,共24分)13、6【解析】由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.14、.【分析】分别计算出阴影部分面积和非阴影面积,即可求出掷中阴影部分的概率.【详解】∵大圆半径为3,小圆半径为2,∴S大圆(m2),S小圆(m2),S圆环=9π﹣4π=5π(m2),∴掷中阴影部分的概率是.故答案为:.【点睛】本题考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.15、【分析】根据根与系数的关系可得要使有两个不相等的实数根,则必须,进而可以计算出k的取值范围.【详解】解:根据根与系数的关系可得要使有两个不相等的实数根,则.故答案为.【点睛】本题主要考查二元一次方程的根与系数的关系,根据方程根的个数,列不等式求解.16、-1【解析】先根据根与系数的关系得到a+b=1,ab=﹣1,再利用通分把+变形为,然后利用整体代入的方法计算.【详解】根据题意得:a+b=1,ab=﹣1,所以+==﹣1.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.17、1【分析】根据题意列出方程,求方程的解即可.【详解】根据题意可得以下方程解得(舍去)故答案为:1.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.18、【分析】通过旋转的性质可以得到,,,从而可以得到是等腰直角三角形,再根据勾股定理可以计算出的长度.【详解】解:根据旋转的性质得:,∴是等腰直角三角形,∴∴∴故答案为:.【点睛】本题主要考查了旋转的性质以及勾股定理的应用,其中根据旋转的性质推断出是等腰直角三角形是解题的关键.三、解答题(共78分)19、见解析【分析】由菱形的性质可得,,然后根据角角边判定,进而得到.【详解】证明:∵菱形ABCD,∴,,∵,,∴,在与中,,∴,∴.【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.20、(1)这两年香草源旅游收入的年平均增长率为20﹪;(2)【分析】(1)根据题意设这两年香草源旅游收入的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果;(2)由题意根据求出的增长率,以2018年收入为初始年求出n年后该县旅游收入即可.【详解】解:(1)设这两年香草源旅游收入的年平均增长率为x,依题意得,解得=20﹪;(舍去).答.这两年香草源旅游收入的年平均增长率为20﹪.(2)由香草源旅游景区的收入一直保持这样的平均年增长率以及2018年收入为720万元可得,香草源旅游景区n年后的收入为:=.答:n年后的收入表达式是.【点睛】本题考查一元二次方程的实际应用,弄清题意并根据题意找到等量关系列方程求解是解答本题的关键.21、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,根据垂直平分线的性质即可确定其它的顶点;(2)先求出内接八边形的中心角,然后根据正方形的性质即可找到各个顶点.【详解】(1)设AO的延长线与圆交于点D,根据圆的内接正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,即OB=AB,故在图中找到AO的中垂线与圆的交点即为正六边形的顶点B和F;同理:在图中找到OD的中垂线与圆的交点即为正六边形的顶点C和E,连接AB、BC、CD、DE、EF、FA,如图①,正六边形即为所求.(2)圆的内接八边形的中心角为360°÷8=45°,而正方形的对角线与边的夹角也为45°∴在如②图所示的正方形OMNP中,连接对角线ON并延长,交圆于点B,此时∠AON=45°;∵∠NOP=45°,∴OP的延长线与圆的交点即为点C同理,即可确定点D、E、F、G、H的位置,顺次连接,如图②,正八边形即为所求.【点睛】此题考查的是画圆的内接正六边形和内接正八边形,掌握圆的内接正六边形和内接正八边形的性质和中心角的求法是解决此题的关键.22、(1);(2)①,②当m=3时,S有最大值,③点P的坐标为(4,6)或(,).【分析】(1)由,则-12a=6,求得a即可;(2)①过点P作x轴的垂线交AB于点D,先求出AB的表达式y=-x+6,设点,则点D(m,-m+6),然后再表示即可;②由在中,<0,故S有最大值;③△PDE为等腰直角三角形,则PE=PD,然后再确定函数的对称轴、E点的横坐标,进一步可得|PE|=2m-4,即求得m即可确定P的坐标.【详解】解:(1)由抛物线的表达式可化为,则-12a=6,解得:a=,故抛物线的表达式为:;(2)①过点P作x轴的垂线交AB于点D,由点A(0,6)、B的坐标可得直线AB的表达式为:y=-x+6,设点,则点D(m,-m+6),∴;②∵,<0∴当m=3时,S有最大值;③∵△PDE为等腰直角三角形,∴PE=PD,∵点,函数的对称轴为:x=2,则点E的横坐标为:4-m,则|PE|=2m-4,即,解得:m=4或-2或或(舍去-2和)当m=4时,=6;当m=时,=.故点P的坐标为(4,6)或(,).【点睛】本题属于二次函数综合应用题,主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点,掌握并灵活应用所学知识是解答本题的关键.23、(1),;(1)y1=﹣1,y1=.【分析】(1)根据配方法即可求出答案;(1)根据因式分解法即可求出答案;【详解】解:(1)∵1x1﹣6x﹣1=0,∴x1﹣3x=,∴(x﹣)1=,∴x=,解得:,;(1)∵1y(y+1)﹣y=1,∴1y(y+1)﹣y﹣1=0,∴(y+1)(1y﹣1)=0,∴y+1=0或1y﹣1=0,解得:y1=﹣1,y1=.【点睛】本题考查解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,本题属于基础题型.24、(1)(2)【分析】(1)利用因式分解法解方程;(2)方程整理后,利用配方法即可求解.【详解】解:(1)x2﹣2x﹣3=0,分解因式得:(x-3)(x+1)=0,可得(x-3)=0或(x+1)=0,解得:x1=3,x2=﹣1;

(2)2x2﹣x﹣1=0,方程整理得:,,,开方得:,或,解得:x1=1,x2=﹣0.1.【点睛】此题考查了解一元二次方程解法的因式分解法,以及配方法,熟练掌握各自的解法是解本题的关键.25、(1)y=-x2-2x+3(2)(-,)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论