版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年四川省成都市第二十三中学数学九上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知正比例函数的函数值随自变量的增大而增大,则二次函数的图象与轴的交点个数为()A.2 B.1 C.0 D.无法确定2.若反比例函数的图象经过点(2,-3),则k值是()A.6 B.-6 C. D.3.下列是一元二次方程的是()A. B. C. D.4.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.8 B.16 C.24 D.325.已知,则下列各式中不正确的是()A. B. C. D.6.如图是一斜坡的横截面,某人沿斜坡上的点出发,走了13米到达处,此时他在铅直方向升高了5米.则该斜坡的坡度为()A. B. C. D.7.在平面直角坐标系中,以原点为旋转中心,把A(3,4)逆时针旋转180°,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3) C.(-3,4) D.(-3,-4)8.若,则的值是()A.1 B.2 C.3 D.49.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限10.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是()A.①② B.①③ C.②③ D.③④11.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米12.某校为了了解九年级学生的体能情况,随机抽取了名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有名学生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是()A. B.C. D.二、填空题(每题4分,共24分)13.设、是关于的方程的两个根,则__________.14.如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.15.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________.16.已知点,在函数的图象上,则的大小关系是________17.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________18.已知二次根式有意义,则满足条件的的最大值是______.三、解答题(共78分)19.(8分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.20.(8分)已知二次函数(k是常数)(1)求此函数的顶点坐标.(2)当时,随的增大而减小,求的取值范围.(3)当时,该函数有最大值,求的值.21.(8分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.22.(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.23.(10分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.24.(10分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.25.(12分)梭梭树因其顽强的生命力和防风固沙的作用,被称为“沙漠植被之王”.新疆北部某沙漠2016年有16万亩梭梭树,经过两年的人工种植和自然繁殖,2018年达到25万亩.按这两年的平均增长率,请估计2019年该沙漠梭梭树的面积.26.如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,≈1.73,≈1.41)
参考答案一、选择题(每题4分,共48分)1、A【分析】根据正比例函数的性质可以判断k的正负情况,然后根据△的正负,即可判断二次函数的图象与轴的交点个数,本题得以解决.【详解】∵正比例函数的函数值随自变量的增大而增大,∴k>0,∵二次函数为∴△=[−2(k+1)]2−4×1×(k2−1)=8k+8>0,∴二次函数为与轴的交点个数为2,故选:A.【点睛】本题考查二次函数与x轴的交点个数和正比例函数的性质,解答本题的关键是明确题意,利用根的判别式来解答.2、B【分析】直接把点代入反比例函数解析式即可得出k的值.【详解】∵反比例函数的图象经过点,
∴,解得:.
故选:B.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、A【分析】用一元二次方程的定义,1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项系数不为零,5看是整式即可.【详解】A、由定义知A是一元二次方程,B、不是等式则B不是一元二次方程,C、二次项系数a可能为0,则C不是一元二次方程,D、含两个未知数,则D不是一元二次方程.【点睛】本题考查判断一元二次方程问题,关键是掌握定义,注意特点1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项数系数不为零,5看是整式.4、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,
∴=0.5,
解得:m=1.
故选:B.【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率.5、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.【详解】A.由可得,变形正确,不合题意;B.由可得,变形正确,不合题意;C.由可得,变形不正确,符合题意;D.由可得,变形正确,不合题意.故选C.【点睛】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.6、A【分析】如图,过点M做水平线,过点N做直线垂直于水平线垂足为点A,则△MAN为直角三角形,先根据勾股定理,求出水平距离,然后根据坡度定义解答即可.【详解】解:如图,过点M做水平线,过点N做垂直于水平线交于点A.在Rt△MNA中,,∴坡度5:12=1:2.1.故选:A【点睛】本题考查的知识点为:坡度=垂直距离:水平距离,通常写成1:n的形式,属于基础题.7、D【分析】由题意可知点B与点A关于原点O中心对称,根据关于原点对称,横纵坐标均互为相反数可得B点坐标.【详解】解:因为点B是以原点为旋转中心,把A(3,4)逆时针旋转180°得到的,所以点B与点A关于原点O中心对称,所以点.故选:D【点睛】本题主要考查了平面直角坐标系中的点对称,理解中心对称的定义是解题的关键.8、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.9、D【解析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.10、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【详解】解:由图,根据勾股定理,可得出①图中阴影三角形的边长分别为:;②图中阴影三角形的边长分别为:;③图中阴影三角形的边长分别为:;④图中阴影三角形的边长分别为:;可以得出①②两个阴影三角形的边长,所以图①②两个阴影三角形相似;故答案为:A.【点睛】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.11、A【分析】试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!12、B【分析】用样本中次数在30~35次之间的学生人数所占比例乘以九年级总人数可得.【详解】解:该校九年级1分钟仰卧起坐次数在30~35次之间的学生人数大约是×150=25(人),故选:B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二、填空题(每题4分,共24分)13、1【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3,=-5∴-3-(-5)=1故答案为1.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠0),则有:,是解答本题的关键.14、(0,n2+n)【分析】根据待定系数法分别求得直线OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐标,得出规律,从而求得点Pn的坐标.【详解】解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案为(0,n2+n).【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键.15、20%【分析】根据增长(降低)率公式可列出式子.【详解】设月平均增长率为x.根据题意可得:.解得:.所以增长率为20%.故答案为:20%.【点睛】本题主要考查了一元二次方程的应用,记住增长率公式很重要.16、【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A(3,y1),B(5,y2)在函数的图象上,∴,,∴y1>y2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.17、1【解析】∵a=3,b=4,c=5,∴a2+b2=c2,∴∠ACB=90°,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,∵S△ACB=S△AOC+S△AOB+S△BOC,∴×AC×BC=×AC×OE+×AB×OF+×BC×OD,∴3×4=4R+5R+3R,解得:R=1.故答案为1.18、【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可求出x的最大值【详解】∵二次根式有意义;∴3-4x≥0,解得x≤,∴x的最大值为;故答案为.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.三、解答题(共78分)19、(1)60;(2)12,图见解析;(3)450【分析】(1)用滑冰的人数除以滑冰的比例,即可解得本次调查共抽取的学生人数.(2)用总人数减去其他各项的人数,即可得到最喜欢冰球项目的人数,补全条形统计图.(3)用总人数乘以最喜欢雪地足球的学生的比例,即可进行估算.【详解】解:(1)(人)∴本次抽样调查共抽取了60名学生(2)(人)∴本次调查中,最喜欢冰球项目的学生人数为12人.补全条形统计图(3)(人)∴由样本估计总体得该中学最喜欢雪地足球的学生约有450人.【点睛】本题考查了概率统计的问题,掌握条形图的性质、饼状图的性质是解题的关键.20、(1);(2);(3)或【分析】(1)先求出顶点横坐标,然后代入解析式求出顶点纵坐标即可;(2)根据二次函数的增减性列式解答即可;(3)分三种情况求解:①当k>1时,当k<0时,当时.【详解】解:(1)对称轴为:,代入函数得:,∴顶点坐标为:;(2)∵对称轴为:x=k,二次函数二次项系数小于零,开口向下;∴当时,y随x增大而减小;∵当时,y随x增大而减小;∴(3)①当k>1时,在中,y随x增大而增大;∴当x=1时,y取最大值,最大值为:;∴k=3;②当k<0时,在中,y随x增大而减小;∴当x=0时,y取最大值,最大值为:;∴;∴;③当时,在中,y随x先增大再减小;∴当x=k时,y取最大值,最大值为:;∴;解得:k=2或-1,均不满足范围,舍去;综上所述:k的值为-2或3.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.21、(1)共调查了50名学生,补图见解析;(2).【分析】(1)设本次测试共调查了名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去、、中的人数,即可解决,画出条形图即可.(2)画树状图展示所有12种等可能的结果数,再找出恰好抽到有1名女生的结果数,然后根据概率公式计算.【详解】解:(1)设本次测试共调查了名学生.由题意,解得:∴本次测试共调查了50名学生.则测试结果为等级的学生数=人.条形统计图如图所示,(2)画树状图:共有12种等可能的结果数,其中恰好抽到有1名女生的结果数6,所以恰好抽到有1名女生的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.也考查了统计图.解题的关键是灵活运用这些知识解决问题.22、.【分析】画树状图展示所有12种等可能的结果数,再找出两人抽到的数字符号相同的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率=.考点:列表法与树状图法.23、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x2+bx+c上,可代入确定b、c的值;(2)过点D作DH⊥x轴,设D(t,-t2+2t+1),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点坐标求最值即可;(1)分两种情况讨论:①过点A作AE1⊥AC,交抛物线于点E1,交y轴于点F,连接E1C,求出点F的坐标,再求直线AE的解析式为y=x−1,再与二次函数的解析式联立方程组求解即可;②过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2,求出直线CM的解析式为y=x+1,再与二次函数的解析式联立方程组求解即可.【详解】(1)解:∵二次函数y=-x2+bx+c与x轴的交点为点A(1,0)与y轴交于点C(0,1)∴解之得∴这个二次函数的解析式为y=-x2+2x+1(2)解:如图,设D(t,-t2+2t+1),过点D作DH⊥x轴,垂足为H,则S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴当t=时,△ACD的面积有最大值此时-t2+2t+1=∴抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).理由如下:有两种情况:①如图,过点A作AE1⊥AC,交抛物线于点E1、交y轴于点F,连接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴点F的坐标为(0,−1).设直线AE的解析式为y=kx+b,将(0,−1),(1,0)代入y=kx+b得:解得∴直线AE的解析式为y=x−1,由解得或∴点E1的坐标为(−2,−5).②如图,过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2.∵∠CAO=45°,∴∠CMA=45°,OM=OC=1.∴点M的坐标为(−1,0),设直线CM的解析式为y=kx+b,将(0,1),(-1,0)代入y=kx+b得:解得∴直线CM的解析式为y=x+1.由解得:或∴点E2的坐标为(1,4).综上,在抛物线上存在点E1(−2,−5)、E2(1,4),使△ACE1、△ACE2是以AC为直角边的直角三角形.【点睛】本题考查了用待定系数法求二次函数解析式、二次函数的最值问题,二次函数中的直角三角形问题.观察图象、求出特殊点坐标是解题的关键.24、(1)1401;(2)w外=x2+(130-a)x;(3)a=2;(4)见解析【分析】(1)将x=1000代入函数关系式求得y,根据等量关系“利润=销售额-成本-广告费”求得w内;
(2)根据等量关系“利润=销售额-成本-广告费”,“利润=销售额-成本-附加费”列出两个函数关系式;
(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值;
(4)根据x=3000,即可求得w内的值和w外关于a的一次函数式,即可解题.【详解】解:(1))∵销售价格y(元/件)与月销量x(件)的函数关系式为y=x+130,∴当x=1000时,y=-10+130=140,w内=x(y-20)-62300=1000×120-62300=1,
故答案为:140,1.(2)w内=x(y-20)-62300=x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃省陇南市(2024年-2025年小学六年级语文)部编版期末考试((上下)学期)试卷及答案
- 陕西省咸阳市(2024年-2025年小学六年级语文)部编版开学考试(下学期)试卷及答案
- 2.6美味疙瘩汤 教学设计 2024-2025学年人民版初中劳动技术七年级上册
- 2025年泰州货运运输驾驶员从业资格证考试试题
- 2025年铜仁道路运输货运从业资格证考试项目
- 2025年西藏货运从业资格考试题目及答案大全
- 2025年贵阳货运从业资格证考试技巧和方法
- 2025年咸阳普通货运从业资格证模拟考试
- 兰州交通大学《中国化马克思主义概论》2023-2024学年第一学期期末试卷
- 科研项目的进展汇报与分析计划
- 小学数学教师专业素养的现状及提升策略
- GB/T 531.1-2008硫化橡胶或热塑性橡胶压入硬度试验方法第1部分:邵氏硬度计法(邵尔硬度)
- GB/T 25000.51-2016系统与软件工程系统与软件质量要求和评价(SQuaRE)第51部分:就绪可用软件产品(RUSP)的质量要求和测试细则
- GB/T 20221-2006无压埋地排污、排水用硬聚氯乙烯(PVC-U)管材
- 第四章自然人
- GB/T 14406-2011通用门式起重机
- GA/T 1922-2021法庭科学疑似毒品中8种芬太尼类物质检验气相色谱和气相色谱-质谱法
- 公司年会小品《老同学显摆大会》台词剧本手稿
- 2021年海南省中考数学模拟试卷及解析
- 海绵城市设计专项方案课件
- 采购部采购员岗位月度KPI绩效考核表
评论
0/150
提交评论