版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西省定边县数学九上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是()A.60° B.80° C.100° D.120°2.以下、、、四个三角形中,与左图中的三角形相似的是()A. B. C. D.3.下列两个变量成反比例函数关系的是()①三角形底边为定值,它的面积S和这条边上的高线h;②三角形的面积为定值,它的底边a与这条边上的高线h;③面积为定值的矩形的长与宽;④圆的周长与它的半径.A.①④ B.①③ C.②③ D.②④4.方程的解是()A.4 B.-4 C.-1 D.4或-15.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则=()A. B. C. D.16.抛物线y=ax2+bx+c(a≠1)如图所示,下列结论:①abc<1;②点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2;③b2>(a+c)2;④2a﹣b<1.正确的结论有()A.4个 B.3个 C.2个 D.1个7.如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°8.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°9.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=110.某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数400150035007000900014000成活数369133532036335807312628成活的频率09230.89009150.9050.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率二、填空题(每小题3分,共24分)11.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,1.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.12.如图,若△ADE∽△ACB,且=,DE=10,则BC=________13.如图:M为反比例函数图象上一点,轴于A,时,______.14.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.15.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.16.如图,在等腰直角△ABC中,∠C=90°,将△ABC绕顶点A逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.17.已知,=________.18.如图,在边长为2的菱形ABCD中,,点E、F分别在边AB、BC上.将BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,抛物线的对称轴x=1,与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的解析式及A、B点的坐标.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形;若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大;求出此时P点的坐标和四边形ABPC的最大面积.20.(6分)如图,为等腰三角形,,是底边的中点,与腰相切于点.(1)求证:与相切;(2)已知,,求的半径.21.(6分)如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.(1)若AE=2.5,CD=3,BD=2,求AB的长;(2)若∠CBE=30°,求证:CG=AD+EF.22.(8分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB绕点O顺时针旋转120°,点B的对应点是点B1.(1)①求点B绕点O旋转到点B1所经过的路程长;②在图中画出1,并直接写出点B1的坐标是;(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:装入不透明的甲袋,装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(3)李南和王易各取一次小球所确定的点(x,y)落在1上的概率是.23.(8分)某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价元时,日盈利为元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?24.(8分)如图,己知抛物线的图象与轴的一个交点为另一个交点为,且与轴交于点(1)求直线与抛物线的解析式;(2)若点是抛物线在轴下方图象上的-一动点,过点作轴交直线于点,当的值最大时,求的周长.25.(10分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.26.(10分)解方程:2x2﹣5x﹣7=1.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据圆周角定理即可得到结论.【详解】解:∵∠BOD=160°,∴∠BAD=∠BOD=80°,故选:B.【点睛】本题考查了圆周角定理,理解熟记圆周角定理是解题关键..2、B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】设小正方形的边长为1,根据勾股定理,所给图形的边分别为,,,所以三边之比为A、三角形的三边分别为、、,三边之比为::,故本选项错误;B、三角形的三边分别为、、,三边之比为,故本选项正确;C、三角形的三边分别为、、,三边之比为,故本选项错误;
D、三角形的三边分别为、、,三边之比为,故本选项错误.
故选:B.【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.3、C【分析】根据反比例函数的定义即可判断.【详解】①三角形底边为定值,它的面积S和这条边上的高线h是成正比例关系,故不符合题意;②三角形的面积为定值,它的底边a与这条边上的高线h是反比例函数关系;故符合题意;③面积为定值的矩形的长与宽;是反比例函数关系;故符合题意;④圆的周长与它的半径,是成正比例关系,故不符合题意.故选:C.【点睛】本题考查了反比例函数的解析式,解答本题的关键是根据题意列出函数关系式来进行判断,本题属于基础题型.4、D【分析】利用因式分解法解一元二次方程即可.【详解】解:解得:故选D.【点睛】此题考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解决此题的关键.5、A【分析】由题意直接根据平行线分线段成比例定理进行分析即可求解.【详解】解:∵a//b//c,∴=.故选:A.【点睛】本题考查平行线分线段成比例定理.注意掌握三条平行线截两条直线,所得的对应线段成比例.6、B【分析】利用抛物线开口方向得到a>1,利用抛物线的对称轴在y轴的左侧得到b>1,利用抛物线与y轴的交点在x轴下方得到c<1,则可对①进行判断;通过对称轴的位置,比较点(-3,y1)和点(1,y2)到对称轴的距离的大小可对②进行判断;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1时,a+b+c>1;x=-1时,a-b+c<1,则可对③进行判断;利用和不等式的性质可对④进行判断.【详解】∵抛物线开口向上,∴a>1,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>1,∵抛物线与y轴的交点在x轴下方,∴c<1,∴abc<1,所以①正确;∵抛物线的对称轴为直线x=﹣,而﹣1<﹣<1,∴点(﹣3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,∴y1>y2,所以②正确;∵x=1时,y>1,即a+b+c>1,x=﹣1时,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正确;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④错误.故选:B.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>1时,抛物线向上开口;当a<1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(1,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>1时,抛物线与x轴有2个交点;△=b2-4ac=1时,抛物线与x轴有1个交点;△=b2-4ac<1时,抛物线与x轴没有交点.7、C【详解】∵,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.8、C【分析】根据是等腰三角形,进行分类讨论【详解】是菱形,,不符合题意所以选C9、D【解析】根据抛物线的顶点式,直接得出结论即可.【详解】解:∵抛物线y=2(x-1)2-6,
∴抛物线的对称轴是x=1.
故选D.【点睛】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.10、B【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案.【详解】解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A选项正确;如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B选项错误;可以用试验次数累计最多时的频率作为概率的估计值,故C选项正确;在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D选项正确.故选:B.【点睛】本题主要考查的是利用频率估计概率,大量反复试验下频率稳定值即概率,掌握这个知识点是解题的关键.二、填空题(每小题3分,共24分)11、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.【详解】根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有1种结果,所以两次摸出的小球标号相同的概率是,故答案为.【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
错因分析中等难度题.失分的原因有两个:(1)没有掌握放回型和不放回型概率计算的区别;(2)未找全标号相同的可能结果.
12、15【分析】根据相似三角形的性质,列出比例式即可解决问题.【详解】解:∵△ADE∽△ACB,∴,DE=10,∴,∴.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.13、﹣1.【分析】根据反比例函数系数的几何意义,由S△AOM=4,可可求出|k|=1,再由函数图像过二、四象限可知k<0,,从而可求出k的值.【详解】∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.14、【分析】首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小.然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MN.∵BC=6为定值,∴四边形的周长取决于MN的大小.如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,∵M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,∴最大值为12+2×=12+.故答案为:12+.【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.15、1,,【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,
∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,
∴,∴,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.
∴,∴,∴DP=;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴,∴,∴DP=;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。综上所述,满足条件的DP的值为1,,.【点睛】本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解.16、125°【分析】根据等腰直角三角形的性质得到∠CAB=45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.17、【分析】先去分母,然后移项合并,即可得到答案.【详解】解:∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了解二元一次方程,解题的关键是掌握解二元一次方程的方法.18、【分析】如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出MG,由此即可解决问题.【详解】过点G作GM⊥AB交BA延长线于点M,则∠AMG=90°,∵G为AD的中点,∴AG=AD==1,∵四边形ABCD是菱形,∴AB//CD,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=AG=,∴MG=,设BE=x,则AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+)2+,∴x=,故答案为.【点睛】本题考查了菱形的性质、轴对称的性质等,正确添加辅助线构造直角三角形利用勾股定理进行解答是关键.三、解答题(共66分)19、(1)y=x2﹣2x﹣3,点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,点P(1+,﹣);(3)故S有最大值为,此时点P(,﹣).【分析】(1)根据题意得到函数的对称轴为:x=﹣=1,解出b=﹣2,即可求解;(2)四边形POP′C为菱形,则yP=﹣OC=﹣,即可求解;(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),再根据ABPC的面积S=S△ABC+S△BCP即可求解.【详解】(1)函数的对称轴为:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再将点C(0,﹣3)代入得到c=-3,,∴抛物线的表达式为:y=x2﹣2x﹣3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,理由:如图1,四边形POP′C为菱形,则yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去负值),故点P(1+,﹣);(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式为:y=x﹣3,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),ABPC的面积S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴当x=时,S有最大值为,此时点P(,﹣).【点睛】此题是一道二次函数的综合题,考查待定系数法求函数解析式,图象与坐标轴的交点,翻折的性质,菱形的性质,利用函数解析式确定最大值,(3)是此题的难点,利用分割法求四边形的面积是解题的关键.20、(1)详见解析;(2)⊙O的半径为.【分析】(1)欲证AC与圆O相切,只要证明圆心O到AC的距离等于圆的半径即可,即连接OD,过点O作OE⊥AC于E点,证明OE=OD.(2)根据已知可求OA的长,再由等积关系求出OD的长.【详解】证明:(1)连结,过点作于点,∵切于,∴,∴,又∵是的中点,∴,∵,∴,∴,∴,即是的半径,∴与相切.(2)连接,则,又为BC的中点,∴,∴在中,,∴由等积关系得:,∴,即O的半径为.【点睛】本题考查的是圆的切线的性质和判定,欲证切线,作垂直OE⊥AC于E,证半径OE=OD;还考查了利用面积相等来求OD.21、(1);(2)见解析.【分析】(1)BE是△ABC的中线,则AC=5,由勾股定理求出AD的长,再由勾股定理求得AB的长;
(2)过点E作EM∥FG,作EN∥AD,先得出EN=AD,然后证明EN=BE,从而有AD=BE.再证明△ABE≌△EMC,得出BE=MC,再推导出四边形EFGM是平行四边形,得出EF=GM,继而可得出结论.【详解】(1)解:∵BE是△ABC的中线,
∴AE=EC=2.5,∴AC=5,
∵AD是△ABC的高,
∴AD⊥BC,,;(2)证明:如图,过点E作EM∥FG,作EN∥AD.∵BE是中线,即E为AC的中点,∴EN为△ACD的中位线,∴EN=AD.∵AD是高,∴EN⊥BC,∴∠ENB=90°.∵∠CBE=30°,∴EN=BE.∴AD=BE.∵FG∥AB,EM∥FG,∴EM∥AB,∴∠BAE=∠MEC.∵EB∥CG,∴∠AEB=∠ECM.在△ABE和△EMC中,∵,∴△ABE≌△EMC(ASA),∴BE=MC.∵EM∥FG,BE∥GC,∴四边形EFGM是平行四边形,∴EF=GM.∴GC=GM+MC=EF+BE=EF+AD.【点睛】本题考查了三角形中位线定理、平行线的性质、平行四边形的判定与性质、勾股定理、含30°角的直角三角形性质以及全等三角形的判定与性质等知识,通过作辅助线构建三角形中位线以及构造平行四边形是解题的关键.22、(1)①;②见解析,B1的坐标是(0,﹣4);(2)见详解;(3)【分析】(1)①根据勾股定理算出OB的长,再根据弧长公式算出线段OB绕着O点旋转到B1所经过的路径长;②由①得∠BOH=30°,结合图象得到旋转后的B1的坐标;(2)利用树状图得到所有可能的结果;(3)计算各点到原点的距离,可判断点落在1上的结果,即可求出概率.【详解】解:(1)①作BH⊥x轴于点H,∵点B的坐标是(2,2),∴BH=2,OH=2,∴OB==4,∴B绕点O旋转到点B1所经过的路程长==;②如图,1为所作,过B作BH⊥x轴,∵tan∠BOH=,∴∠BOH=30°,又∵∠BOB1=120°,∴∠HOB1=90°,∴点B1在y轴负半轴上由旋转性质可知OB=OB1==4,所以点B1的坐标是(0,﹣4);(2)画树状图为:共有12种等可能的结果:分别为(4,0)(4,-1)(4,-2)(4,-6)()()()()(,0)(,-1)(,-2)(,-6);(3)(4,0)到原点的距离为:4,(4,-1)到原点的距离为:=,(4,-2)到原点的距离为:=,(4,-6)到原点的距离为=,()到原点的距离是,()到原点的距离是=,()到原点的距离为:=4,()到原点的距离是=4,(,0)到原点的距离为,(,-1)到原点的距离为=,(,-2)到原点的距离是=,(,-6)到原点的距离为=,点(x,y)落在1上的结果数为2,所以点(x,y)落在1上的概率==.【点睛】本题考查作图—旋转变换、旋转性质、概率问题树状图、弧长等问题,难度适中.23、(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园普法劳务合同范例
- 拉客大车租赁合同范例
- 关于维修合同范例
- 电梯改造更换合同范例
- 杭州按揭购房合同范例
- 混凝土抵房合同范例
- 新建高速征地合同范例
- 白银铺面买卖合同范例
- 拆借资金合同范例
- 断桥铝 询价合同范例
- 人生海海读书分享阅读时光好书读后感
- 02S515排水检查井图集
- 2024-2030年中国Janus激酶(JAK)抑制剂行业市场发展趋势与前景展望战略分析报告
- 水稻育秧合同范本
- 2025高考语文步步高大一轮复习讲义教材文言文点线面答案精析
- 支气管镜的临床应用
- 2024-2030年中国眼部保健品行业市场发展趋势与前景展望战略分析报告
- 大学英语听说一智慧树知到期末考试答案章节答案2024年西北政法大学
- 中国成人失眠诊断与治疗指南(2023版)解读
- 《中医适宜技术》期末考试复习题库(含答案)
- 知道网课智慧《设计创新思维》测试答案
评论
0/150
提交评论