2023年山东省济南市实验中学数学九年级第一学期期末监测试题含解析_第1页
2023年山东省济南市实验中学数学九年级第一学期期末监测试题含解析_第2页
2023年山东省济南市实验中学数学九年级第一学期期末监测试题含解析_第3页
2023年山东省济南市实验中学数学九年级第一学期期末监测试题含解析_第4页
2023年山东省济南市实验中学数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年山东省济南市实验中学数学九年级第一学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.反比例函数(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.42.如图是我们学过的反比例函数图象,它的表达式可能是()A. B. C. D.3.如图,函数与函数在同一坐标系中的图象如图所示,则当时().A.1x1 B.1x0或x1 C.1x1且x0 D.0x1或x14.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m= C.m= D.m=105.二次函数y=x2﹣6x图象的顶点坐标为()A.(3,0) B.(﹣3,﹣9) C.(3,﹣9) D.(0,﹣6)6.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°7.下列等式从左到右变形中,属于因式分解的是()A. B.C. D.8.如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC等于()A.130° B.125° C.120° D.115°9.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个10.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°11.已知四边形中,对角线,相交于点,且,则下列关于四边形的结论一定成立的是()A.四边形是正方形 B.四边形是菱形C.四边形是矩形 D.12.二次函数部分图象如图所示,有以下结论:①;②;③,其中正确的是()A.①②③ B.②③ C.①② D.①③二、填空题(每题4分,共24分)13.将函数y=5x2的图象向左平移2个单位,再向上平移3个单位,所得抛物线对应函数的表达式为__________.14.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为____米.15.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为_____.16.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.17.已知函数,如果,那么___________.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.三、解答题(共78分)19.(8分)如图,在一块长8、宽6的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.20.(8分)在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.21.(8分)用适当的方法解下列一元二次方程:(1)(2)22.(10分)如图,在直角坐标系中,,.借助网格,画出线段向右平移个单位长度后的对应线段,若直线平分四边形的面积,请求出实数的值.23.(10分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.24.(10分)已知抛物线C1的解析式为y=-x2+bx+c,C1经过A(-2,5)、B(1,2)两点.(1)求b、c的值;(2)若一条抛物线与抛物线C1都经过A、B两点,且开口方向相同,称两抛物线是“兄弟抛物线”,请直接写出C1的一条“兄弟抛物线”的解析式.25.(12分)小尧用“描点法”画二次函数的图像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小尧算错了其中的一个y值,请你指出这个算错的y值所对应的x=;(2)在图中画出这个二次函数的图像;(3)当y≥5时,x的取值范围是.26.如图,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A、P两点.(1)求抛物线的函数关系式.(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C、D两点,且BC=AB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.2、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A、为二次函数表达式,故A选项错误;B、为反比例函数表达式,且,经过第一三象限,符合图象,故B选项正确;C、为反比例函数表达式,且,经过第二四象限,不符合图象,故C选项错误;D、为一次函数表达式,故D选项错误.故答案为B.【点睛】本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.3、B【分析】根据题目中的函数解析式和图象可以得到当时的x的取值范围,从而可以解答本题.【详解】根据图象可知,当函数图象在函数图象上方即为,∴当时,1x0或x1.故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于利用函数图象解决问题.4、B【解析】试题分析:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴,即,解得m=.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.5、C【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.6、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.7、D【分析】直接利用因式分解的定义分析得出答案.【详解】A.,属于整式乘法运算,不符合因式分解的定义,故此选项错误;B.,右边不是整式的积的形式,不符合因式分解的定义,故此选项错误;C.,属于整式乘法运算,不符合因式分解的定义,故此选项错误;D.),属于因式分解,符合题意;故选:D.【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.8、B【分析】根据圆周角定理求出∠BOC=2∠A,求出∠A度数,根据三角形内角和定理求出∠ABC+∠ACB,根据三角形的内心得出∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再求出答案即可.【详解】∵在△ABC中,∠BOC=140°,O是外心,∴∠BOC=2∠A,∴∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵I为△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB==55°,∴∠BIC=180°﹣(∠IBC+∠ICB)=125°,故选:B.【点睛】此题主要考查三角形内心和外心以及圆周角定理的性质,熟练掌握,即可解题.9、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,

∴摸到白球的频率为1-0.15-0.45=0.4,

故口袋中白色球的个数可能是40×0.4=16个.

故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.11、C【分析】根据OA=OB=OC=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】,四边形是平行四边形且,是矩形,题目没有条件说明对角线相互垂直,∴A、B、D都不正确;故选:C【点睛】本题是考查矩形的判定方法,常见的又3种:①一个角是直角的四边形是矩形;②三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12、A【分析】根据二次函数的性质,结合图中信息,一一判断即可解决问题.【详解】由图象可知,a<0,b<0,c>0∴,①正确;图像与x轴有两个交点,∴,②正确;对称轴x=,∴,故③正确;故选A.【点睛】本题考查二次函数图象与系数的关系,解题的关键是灵活应用图中信息解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、y=5(x+2)2+3【分析】根据二次函数平移的法则求解即可.【详解】解:由二次函数平移的法则“左加右减”可知,二次函数y=5x2的图象向左平移2个单位得到y=,由“上加下减”的原则可知,将二次函数y=的图象向上平移3个单位可得到函数y=,故答案是:y=.【点睛】本题主要考查二次函数平移的法则,其中口诀是:“左加右减”、“上加下减”,注意数字加减的位置.14、2【分析】根据题意可知,本题考查相似三角形性质,根据中心投影的特点和规律以及相似三角形性质,运用相似三角形对应边成比例进行求解.【详解】解:根据题意可知当小颖在BG处时,∴,即∴AP=6当小颖在DH处时,∴,即∴∴DE=2故答案为:2【点睛】本题考查了中心投影的特点和规律以及相似三角形性质的运用,解题关键是运用相似三角形对应边相等.15、1【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【详解】∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=1.故答案为:1.【点睛】本题考查了圆周角定理的推论及垂径定理,掌握“直径所对的圆周角是直角”,及垂径定理是关键.16、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.17、1【分析】把x=2代入函数关系式即可求得.【详解】f(2)=3×22-2×2-1=1,

故答案为1.【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于掌握函数图象上点的坐标适合解析式.18、1+【分析】利用二次函数图象上点的坐标特征可求出点A、B、D的坐标,进而可得出OD、OA、OB,根据圆的性质可得出OM的长度,在Rt△COM中,利用勾股定理可求出CO的长度,再根据CD=CO+OD即可求出结论.【详解】当x=0时,y=(x﹣1)2﹣4=﹣1,∴点D的坐标为(0,﹣1),∴OD=1;当y=0时,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴点A的坐标为(﹣1,0),点B的坐标为(0,1),∴AB=4,OA=1,OB=1.连接CM,则CM=AB=2,OM=1,如图所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案为1+.【点睛】先根据二次函数与一元二次方程的关系,勾股定理,熟练掌握二次函数与一元二次方程的关系是解答本题的关键.三、解答题(共78分)19、花圃四周绿地的宽为1m【分析】设花圃四周绿地的宽为x米,根据矩形花圃的面积=矩形绿地面积的一半列方程求解即可.【详解】解:设花圃四周绿地的宽为xm,由题意,得:(6-2x)(8-2x)=6×8,解方程得:x1=1,x2=6(舍),答:花圃四周绿地的宽为1m.【点睛】本题考查的知识点是一元二次方程的实际应用,根据题意找出题目中的等量关系式是解此题的关键.20、2.6cm【分析】先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.【详解】解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.【点睛】本题考查了角平分线的性质定理,属于简单题,正确作出辅助线是解题关键.21、(1);(2).【分析】(1)根据因式分解法求解方程即可.(2)根据公式,将系数代入即可.【详解】(1)原方程变形,即.∴或.∴.(2)∵,∴∴∴.【点睛】本题考查了一元二次方程的解法.22、【分析】根据平移变换即可作出对应线段,根据平行四边形的性质,平分平行四边形面积的直线经过平行四边形的中心,然后求出AC的中点,代入直线计算即可求出k值.【详解】画图如图所示:点坐标为,点坐标为,的中点坐标为,又直线平分平行四边形的面积,则过点,,.【点睛】本题考查的是作图-平移变换,平行四边形的性质,待定系数法求函数解析式,要注意平分平行四边形面积的直线经过平行四边形的中心的应用.23、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明△BED≌△CFD(ASA),即可证得DE=DF;(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明△EDG≌△FDC(ASA),进而证得DE=DF;(3)由题意过点D作DN⊥AC于N,DM⊥AB于M,继而再全等三角形的性质与判定,结合等边三角形性质证明△DME≌△DNF(ASA),即可证得DE=DF.【详解】解:(1)∵AB=AC,∠A=60°,∴△ABC是等边三角形,即∠B=∠C=60°,∵D是BC的中点,∴BD=CD,∵∠EDF=120°,DF⊥AC,∴∠FDC=30°,∴∠EDB=30°,∴△BED≌△CFD(ASA),∴DE=DF.(2)取AC中点G,连接DG,如下图,∵D为BC的中点,∴DG=AC=BD=CD,∴△BDG是等边三角形,∴∠GDE+∠EDB=60°,∵∠EDF=120°,∴∠FDC+∠EDB=60°,∴∠EDG=∠FDC,∴△EDG≌△FDC(ASA),∴DE=DF,∴结论仍然成立.(3)如下图,过点D作DN⊥AC于N,DM⊥AB于M,∴∠DME=∠DNF=90°,由(1)可知∠B=∠C=60°,∴∠NDC=∠BDM=30°,DM=DN,∴∠MDN=120°,即∠NDF=∠MDE,∴△DME≌△DNF(ASA),∴DE=DF,∴仍然成立.【点睛】本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键.24、(1)b=-2,c=5;(2)(答案不唯一).【分析】(1)直接把点代入,求出的值即可得出抛物线的解析式;(2)根据题意,设“兄弟抛物线”的解析式为:,直接把点代入即可求得答案.【详解】(1)∵在C1上,∴,解得:.(2)根据“兄弟抛物线”的定义,知:“兄弟抛物线”经过A(-2,5)、B(1,2)两点,且开口方向相同,∴设“兄弟抛物线”的解析式为:,∵在“兄弟抛物线”上,∴,解得:.∴另一条“兄弟抛物线”的解析式为:.【点睛】本题主要考查了待定系数法求二次函数,正确理解题意,明确“兄弟抛物线”的定义是解题的关键.25、(1)2;(2)详见解析;(3)或【分析】(1)由表格给出的信息可以看出,该函数的对称轴为直线x=-1,则x=-4与x=2时应取值相同.(2)将表格中的x,y值看作点的坐标,分别在坐标系中描出这几个点,用平滑曲线连接即可作出这个二次函数的图象;(3)根据抛物线的对称轴,开口方向,利用二次函数的对称性判断出x=-4或2时,y=5,然后写出y≥5时,x的取值范围即可.【详解】解:(1)从表格可以看出,当x=-2或x=0时,y=-3,

可以判断(-2,-3),(0,-3)是抛物线上的两个对称点,

(-1,-4)就是顶点,设抛物线顶点式y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论