2023年内蒙古呼伦贝尔市尼尔基第二中学数学九上期末学业质量监测试题含解析_第1页
2023年内蒙古呼伦贝尔市尼尔基第二中学数学九上期末学业质量监测试题含解析_第2页
2023年内蒙古呼伦贝尔市尼尔基第二中学数学九上期末学业质量监测试题含解析_第3页
2023年内蒙古呼伦贝尔市尼尔基第二中学数学九上期末学业质量监测试题含解析_第4页
2023年内蒙古呼伦贝尔市尼尔基第二中学数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年内蒙古呼伦贝尔市尼尔基第二中学数学九上期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.2.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是()①;②;③;④A.1 B.2 C.3 D.43.抛物线y=﹣(x﹣1)2﹣2的顶点坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)4.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10005.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B. C.∠ACD=∠ADC D.OM=MD6.如图,在中,,,平分,是的中点,若,则的长为()A.4 B. C. D.7.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是()A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“红桃”8.某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=369.下列事件中,是必然事件的是()A.某射击运动员射击一次,命中靶心B.抛一枚硬币,一定正面朝上C.打开电视机,它正在播放新闻联播D.三角形的内角和等于180°10.在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A.2000000cm B.2000m C.200km D.2000km11.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有()A.12人 B.18人 C.9人 D.10人12.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.二、填空题(每题4分,共24分)13.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.随机摸出一只球记下颜色后放回,不断重复上述实验,统计数据如下:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601共有白球___________只.14.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.15.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.16.函数是关于的二次函数,且抛物线的开口向上,则的值为____________.17.已知线段a=4,b=9,则a,b的比例中项线段长等于________.18.函数和在第一象限内的图象如图,点是的图象上一动点,轴于点,交的图象于点;轴于点,交的图象于点,则四边形的面积为______.三、解答题(共78分)19.(8分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.20.(8分)二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为;①求其图象的焦点的坐标;②求过点且与轴平行的直线与二次函数图象交点的坐标.21.(8分)如图,一次函数y1=mx+n与反比例函数y2=(x>0)的图象分别交于点A(a,4)和点B(8,1),与坐标轴分别交于点C和点D.(1)求一次函数与反比例函数的解析式;(2)观察图象,当x>0时,直接写出y1>y2的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.22.(10分)体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另个人记为踢一次.如果从小强开始踢,请你用列表法或画树状图法解决下列问题:(1)经过两次踢球后,足球踢到小华处的概率是多少?(2)经过三次踢球后,足球踢回到小强处的概率是多少?23.(10分)解方程:x2﹣2x﹣2=1.24.(10分)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.25.(12分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.26.如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;(2)若α=45°,求BD:DC的值;(3)求证:AM•CN=AN•BD.

参考答案一、选择题(每题4分,共48分)1、D【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到,借助相似三角形的性质即可解决问题.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴,∴S△DOE:S△AOC=,故选:D.【点睛】此题考查相似三角形的判定及性质,根据BE:EC=1:3得到同高两个三角形的底的关系是解题的关键,再利用相似三角形即可解答.2、C【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【详解】∵AB⊥CD,∴,CE=DE,②正确,∴∠BOC=2∠BAD=40°,③正确,∴∠OCE=90°−40°=50°,④正确;又,故①错误;故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.3、D【解析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线y=﹣(x﹣1)2﹣2的顶点坐标是(1,﹣2).故选D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.4、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.5、D【解析】∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;∵B为的中点,即,选项B成立;在△ACM和△ADM中,∵AM=AM,∠AMC=∠AMD=90°,CM=DM,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立.而OM与MD不一定相等,选项D不成立.故选D.6、B【分析】首先证明,然后再根据在直角三角形中,斜边上的中线等于斜边的一半,即.【详解】解:设则,在中,即解得为中点,故选B【点睛】本题主要考查了角平分线的性质、直角三角形斜边上的中线,含30度角的直角三角形.7、B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【详解】解:扑克牌一共有54张,所以抽到“”的概率是,A.抽到“大王”的概率是,B.抽到“2”的概率是,C.抽到“小王”的概率是,D.抽到“红桃”的概率是,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.8、A【分析】设游客每月的平均增长率为x,根据该旅游景点8月份及10月份接待游客人次数,即可得出关于x的一元二次方程,此题得解.【详解】解:设游客每月的平均增长率为x,依题意,得:16(1+x)2=1.故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9、D【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【详解】A.某射击运动员射击一次,命中靶心,是随机事件,故此选项错误;B.抛一枚硬币,一定正面朝上,是随机事件,故此选项错误;C.打开电视机,它正在播放新闻联播,是随机事件,故此选项错误;D.三角形的内角和等于180°,是必然事件.故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.11、C【解析】试题分析:设这个小组有人,故选C.考点:一元二次方程的应用.12、C【解析】根据简单几何体的三视图即可求解.【详解】三视图的俯视图,应从上面看,故选C【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.二、填空题(每题4分,共24分)13、30【分析】根据利用频率估计概率得到摸到白球的概率为60%,然后根据概率公式计算n的值.【详解】白球的个数=只故答案为:30【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率14、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、1【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴,解得h=1(m).故答案为1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16、【分析】由题意根据题意列出关于m的不等式组,求出m的值即可.【详解】解:∵函数是关于x的二次函数,且抛物线的开口向上,∴,解得m=-1.故答案为-1.【点睛】本题考查的是二次函数的定义,熟知一般地形如y=ax1+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数是解答此题的关键.17、1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,

∴,即,解得,(不合题意,舍去)

故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.18、3【解析】根据反比例函数系数k的几何意义可分别求得△OBD、△OAC、矩形PDOC的面积,据此可求出四边形PAOB的面积.【详解】解:如图,

∵A、B是反比函数上的点,

∴S△OBD=S△OAC=,∵P是反比例函数上的点,

∴S矩形PDOC=4,

∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【点睛】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.三、解答题(共78分)19、(1)见解析;(2)MN=2.【解析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【详解】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN==2.【点睛】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.20、(1)①;②;(2)①;②和【分析】(1)直接根据新定义即可求出抛物线的焦点;(2)①先将二次函数解析式配成顶点式,再根据新定义即可求出抛物线的焦点;②依题意可得点且与轴平行的直线,根据平行于x轴的直线上的点的纵坐标相等,将点F的纵坐标代入解析式即可求得x的值,从而得出交点坐标.【详解】(1)①根据新定义,可得,所以抛物线的焦点是;②根据新定义,可得h=−1,,所以抛物线的焦点是;(2)①将化为顶点式得:根据新定义,可得h=−1,,所以可得抛物线的焦点坐标;②由①知,所以过点且与轴平行的直线是,将代入得:,解得:或,所以,过点且与轴平行的直线与二次函数图象交点的坐标为和.【点睛】本题考查了新定义、二次函数的顶点式、求解直线与抛物线的交点坐标,解决这题的关键是理解新定义求抛物线的焦点.21、(1)y1=﹣x+5,y2=;(2)2<x<1;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【分析】(1)先将点B代入反比例函数解析式中求出反比例函数的解析式,然后进一步求出A的坐标,再将A,B代入一次函数中求一次函数解析式即可;(2)根据图象和两函数的交点即可写出y1>y2的解集;(3)先求出C,D的坐标,从而求出CD,AD,OD的长度,然后分两种情况:当时,△COD∽△APD;当时,△COD∽△PAD,分别利用相似三角形的性质进行讨论即可.【详解】解:(1)把B(1,1)代入反比例函数中,则,解得∴反比例函数的关系式为,∵点A(a,4)在图象上,∴a==2,即A(2,4)把A(2,4),B(1,1)两点代入y1=mx+n中得解得:,所以直线AB的解析式为:y1=﹣x+5;反比例函数的关系式为y2=,(2)由图象可得,当x>0时,y1>y2的解集为2<x<1.(3)由(1)得直线AB的解析式为y1=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==∵A(2,4),∴AD==4设P点坐标为(a,0),由题可知,点P在点D左侧,则PD=10﹣a由∠CDO=∠ADP可得①当时,,如图1此时,∴,解得a=2,故点P坐标为(2,0)②当时,,如图2当时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【点睛】本题主要考查反比例函数与一次函数的综合,相似三角形的判定与性质,掌握待定系数法和相似三角形的判定及性质是解题的关键.22、(1);(2).【分析】(1)根据画列表法或树状图求概率;(2)根据画列表法或树状图求概率【详解】解:(1)画树状图如下图所示:由树状图可知,(经过两次踢球后,足球踢到小华处).(2)画树状图如下图所示:由树状图可知,(经过三次踢球后,足球踢回到小强处).【点睛】本题考查了根据画树状图求概率23、x1=1+,x2=1﹣.【解析】试题分析:把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.试题解析:x2﹣2x﹣2=1移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.考点:配方法解一元二次方程24、证明见解析【解析】(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF∥BC,于是∠OEC=∠BCE,等量代换∠OEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;

(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.【详解】解:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF.∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC.又∵OE=OF,∴四边形DECF是平行四边形.∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG,∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.【点睛】本题主要考查平行线的性质及矩形的判定,证得OE=OF,得出四边形DECF是平行四边形是解题的关键,注意角平分线的应用.25、(1)证明见解析;(2)【分析】(1)连接OE,如图,通过证明∠GEA+∠OEA=90°得到OE⊥GE,然后根据切线的判定定理得到EG是⊙O的切线;(2)连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,利用勾股定理得到,解得r=3,然后证明Rt△OEM∽Rt△CHA,再利用相似比计算OM的长.【详解】(1)证明:连接OE,如图,

∵GE=GF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论