版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年辽宁省葫芦岛市九年级数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.计算的结果是()A. B. C. D.92.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则的值是()A. B. C. D.3.如图,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O为圆心,AO为半径作半圆,以A为圆心,AB为半径作弧BD,则图中阴影部分的面积为()A.3π B.π+1 C.π D.24.已知函数的图象过点,则该函数的图象必在()A.第二、三象限 B.第二、四象限C.第一、三象限 D.第三、四象限5.如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是()A.30 B.30π C.60π D.48π6.如图的的网格图,A、B、C、D、O都在格点上,点O是()A.的外心 B.的外心 C.的内心 D.的内心7.如图,将Rt△ABC绕直角顶点C顺时针旋转90°得到△DEC,连接AD,若∠BAC=26°,则∠ADE的度数为()A.13° B.19° C.26° D.29°8.下列结论正确的是()A.三角形的外心是三条角平分线的交点B.平分弦的直线垂直于弦C.弦的垂直平分线必平分弦所对的两条弧D.直径是圆的对称轴9.如图,的半径为,圆心到弦的距离为,则的长为()A. B. C. D.10.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.11.如图,已知抛物线y1=x1-1x,直线y1=-1x+b相交于A,B两点,其中点A的横坐标为1.当x任取一值时,x对应的函数值分别为y1,y1,取m=(|y1-y1|+y1+y1).则()A.当x<-1时,m=y1 B.m随x的增大而减小C.当m=1时,x=0 D.m≥-112.二次函数=ax2+bx+c的部分对应值如表,利用二次的数的图象可知,当函数值y>0时,x的取值范围是()x﹣3﹣2﹣1012y﹣12﹣50343A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>3二、填空题(每题4分,共24分)13.一个盒子里有完全相同的三个小球,球上分别标有数字,,,随机摸出一个小球(不放回),其数字为,再随机摸出另一个小球其数字记为,则满足关于的方程有实数根的概率是___________.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.15.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.16.抛物线的顶点坐标是___________.17.如图,要拧开一个边长为的正六边形螺帽,扳手张开的开口至少为__________.18.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.三、解答题(共78分)19.(8分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示①②③三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().(1)求与之间的函数表达式,并注明自变量的取值范围.(2)当为何值时,有最大值?最大值是多少?20.(8分)“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?21.(8分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)22.(10分)在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣2ax+4(a≠0).(1)当a=1时,①抛物线G的对称轴为x=;②若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是;(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.23.(10分)如图,在△ABC中,点D在AB边上,∠ABC=∠ACD,(1)求证:△ABC∽△ACD(2)若AD=2,AB=5.求AC的长.24.(10分)如图,在中,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.(1)用含的代数式表示线段的长.(2)当点与点重合时,求的值.(3)设与重叠部分图形的面积为,求与之间的函数关系式.25.(12分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.26.如图,已知直线y=x+2与x轴、y轴分别交于点B,C,抛物线y=x2+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)若点P是x轴上方抛物线上一点,连接OP.①若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标.②在抛物线上是否存在点P,使得∠POC=∠ACO若存在,求出点P坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可.【详解】解:,计算的结果是1.故选:D.【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.2、C【分析】先证明AG=GD,得到GE为△ADC的中位线,由三角形的中位线可得GEDCBD;由EG∥BC,可证△GEF∽△BDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案.【详解】∵E为AC中点,EG∥BC,∴AG=GD,∴GE为△ADC的中位线,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故选:C.【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.3、C【分析】根据题意和图形可以求得的长,然后根据图形,可知阴影部分的面积是半圆的面积减去扇形的面积,从而可以解答本题.【详解】解:在中,,,,图中阴影部分的面积为:,故选:C.【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、B【解析】试题分析:对于反比例函数y=,当k>0时,函数图像在一、三象限;当k<0时,函数图像在二、四象限.根据题意可得:k=-2.考点:反比例函数的性质5、C【解析】试题分析:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴这个圆锥漏斗的侧面积是:πrl=π×6×10=60π(cm2).故选C.考点:圆锥的计算.6、B【分析】连接OA、OB、OC、OD,设网格的边长为1,利用勾股定理分别求出OA、OB、OC、OD的长,根据O点与三角形的顶点的距离即可得答案.【详解】连接OA、OB、OC、OD,设网格的边长为1,∴OA==,OB==,OC==,OD==,∵OA=OB=OC=,∴O为△ABC的外心,故选B.【点睛】本题考查勾股定理的应用,熟练掌握三角形的外心和内心的定义是解题关键.7、B【分析】根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA=45°,根据∠ADE=∠CDA﹣∠CDE,即可求解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故选:B.【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,8、C【分析】根据三角形的外心定义可以对A判断;根据垂径定理的推论即可对B判断;根据垂径定理即可对C判断;根据对称轴是直线即可对D判断.【详解】A.三角形的外心是三边垂直平分线的交点,所以A选项错误;B.平分弦(不是直径)的直径垂直于弦,所以B选项错误;C.弦的垂直平分线必平分弦所对的两条弧,所以C选项正确;D.直径所在的直线是圆的对称轴,所以D选项错误.故选:C.【点睛】本题考查了三角形的外接圆与外心、垂径定理、圆的有关概念,解决本题的关键是掌握圆的知识.9、D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.10、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.11、D【分析】将点的横坐标代入,求得,将,代入求得,然后将与联立求得点的坐标,然后根据函数图象化简绝对值,最后根据函数的性质,可得函数的增减性以及的范围.【详解】将代入,得,点的坐标为.将,代入,得,.将与联立,解得:,或,.点的坐标为.∴当x<-1时,,∴m=(|y1-y1|+y1+y1)=(y1-y1+y1+y1)=y1,故错误;当时,,.当时,.当时,,.∴当x<1时,m随x的增大而减小,故错误;令,代入,求得:或(舍去),令,代入,求得:,∴当m=1时,x=0或,故错误.∵m=,画出图像如图,∴.∴D正确.故选.【点睛】本题主要考查的是二次函数与一次函数的综合,根据函数图象比较出与的大小关系,从而得到关于x的函数关系式,是解题的关键.12、C【分析】利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x=1,则抛物线的顶点坐标为(1,4),所以抛物线开口向下,则抛物线与x轴的一个交点坐标为(3,1),然后写出抛物线在x轴上方所对应的自变量的范围即可.【详解】∵抛物线经过点(1,3),(2,3),∴抛物线的对称轴为直线,∴抛物线的顶点坐标为(1,4),抛物线开口向下,∵抛物线与x轴的一个交点坐标为(﹣1,1),∴抛物线与x轴的一个交点坐标为(3,1),∴当﹣1<x<3时,y>1.故选:C.【点睛】本题考查了二次函数与轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题.二、填空题(每题4分,共24分)13、.【解析】解:画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有4种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:.故答案为.14、1【解析】作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y=上,
∴a=1×1=1.故答案是:1.15、12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可.【详解】设这个圆锥的母线长为,依题意,有:,解得:,故答案为:12.【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.16、(1,﹣4).【解析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).17、【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.【详解】设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=8mm,∠AOB=60°,∴cos∠BAC=,∴AM=8×=4(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=8(mm).故答案为:.【点睛】本题考查了正多边形和圆的知识.构造一个由半径、半边、边心距组成的直角三角形,运用锐角三角函数进行求解是解此题的关键.18、-1【解析】每次变化时,开口方向变化但形状不变,则a=1,故开口向上时a=1,开口向下时a=-1;与x轴的交点在变化,可发现规律抛物线Cn与x轴交点的规律是(2n-2,0)和(2n,0),由两点式y=a(x-x1)(x-x2)【详解】由抛物线C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),则抛物线C2:y=(x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),则抛物线C3:y=-(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),则抛物线C4:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y=1×(-1)-1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式.三、解答题(共78分)19、(1);(2)时,有最大值【分析】(1)根据题意三个区域面积直接求与之间的函数表达式,并根据表示自变量的取值范围即可;(2)由题意对与之间的函数表达式进行配方,即可求的最大值.【详解】解:(1)假设为,由题意三个区域面积相等可得,区域1=区域2,面积法,得,由总长为120,故,得.所以,面积(2),所以当时,为最大值.【点睛】本题考查二次函数的性质在实际生活中的应用.最大值的问题常利用函数的增减性来解答.20、(1)年平均增长率为20%;(2)28800户【分析】(1)一般用增长后的量=增长前的量×(1+增长率),今年年要投入资金是5(1+x)亿元,在今年的基础上再增长x,就是明年的资金投入5(1+x)(1+x),由此可列出方程5(1+x)2=7.2,求解即可;(2)计算出2020年投入资金即可得解.【详解】(1)解:设年平均增长率为x5(1+x)2=7.2解得x1=﹣2.2(舍去),x2=0.2∴x=0.2=20%答:年平均增长率为20%;(2)7.2×(1+20%)=8.64(亿元)=86400(万元),86400÷3=28800(户),答:2020年能帮助28800户建设保障性住房.【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.21、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.22、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)当a=1时,①根据二次函数一般式对称轴公式,即可求得抛物线G的对称轴;②根据抛物线的对称性求得关于对称轴的对称点为,再利用二次函数图像的增减性即可求得答案;(2)根据平移的性质得出、,由题意根据函数图象分三种情况进行讨论,即可得解.【详解】解:(1)①∵当a=1时,抛物线G:y=ax2﹣2ax+1(a≠0)为:∴抛物线G的对称轴为;②画出函数图象:∵在抛物线G上有两点(2,y1),(m,y2),且y2>y1,,∴①当时,随的增大而增大,此时有;②当时,随的增大而减小,抛物线G上点关于对称轴的对称点为,此时有.∴m的取值范围是或;(2)∵抛物线G:y=ax2﹣2ax+1(a≠0的对称轴为x=1,且对称轴与x轴交于点M∴点M的坐标为(1,0)∵点M与点A关于y轴对称∴点A的坐标为(﹣1,0)∵点M右移3个单位得到点B∴点B的坐标为(1,0)依题意,抛物线G与线段AB恰有一个公共点把点A(﹣1,0)代入y=ax2﹣2ax+1,可得;把点B(1,0)代入y=ax2﹣2ax+1,可得;把点M(1,0)代入y=ax2﹣2ax+1,可得a=1.根据所画图象可知抛物线G与线段AB恰有一个公共点时可得:或.故答案是:(1)①1;②m>2或m<0;(2)或【点睛】本题考查了二次函数图像的性质、二次函数图象上的点的坐标特征以及坐标平移,解决本题的关键是综合利用二次函数图象的性质.23、(1)详见解析;(2)【分析】(1)根据∠ABC=∠ACD,∠A=∠A即可证明,(2)由上一问列出比例式,代入求值即可.【详解】证明:(1)∵∠ABC=∠ACD,∠A=∠A∴△ABC∽△ACD(2)解:△ABC∽△ACD∴∵AD=2,AB=5∴∴AC=【点睛】本题考查了相似三角形的判定和性质,属于简单题,列比例式是解题关键.24、(1);(2)t=1;(3).【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论.【详解】解:在中,.,在中,,.在中,,.点和点重合,,;当时,;当时,如图2,,在中,,,【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,正确作出图形是解本题的关键.25、(1);(2)【分析】(1)共有4个补给站,所以小明选择补给站C(球王故里)的概率是;(2)用树状图或列表表示出所有的情况数,从中找出小明和小红恰好选择同一个补给站的情况数,利用概率公式求解即可.【详解】解:(1)在这4个补给站中任意选择一个补给站服务,每个补给站被选择的可能性相同,∴小明选择补给站C(球王故里)的概率是;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《焊接标准》教学大纲
- 广西理论知识和业务规范考题
- 建筑装饰材料与设计教案
- 家教教案(教师版)必修一第三章
- 玉溪师范学院《社会政策》2022-2023学年第一学期期末试卷
- 玉溪师范学院《马克思主义经典文献导读》2023-2024学年第一学期期末试卷
- 冀教版六年级下册英语全册教案
- 2下第二单元课件
- 2024年盐业项目综合评估报告
- 2023年微电子组件项目综合评估报告
- 完整解读新版《化学》新课标2022年《义务教育化学课程标准(2022年版)》PPT课件
- 针织弹性面料基本知识
- 民法典关于监护的规定解读
- 便携式气体检测仪使用方法(课堂PPT)
- EN779-2012一般通风过滤器——过滤性能测定(中文版)
- 安全文明施工设施配置清单
- 幼儿园教研主题30篇
- 应用随机过程PPT课件
- 母版_安徽省中小学生转学申请表
- 初中美术课说课稿(课堂PPT)
- YY∕T 0106-2021 医用诊断X射线机通用技术条件
评论
0/150
提交评论