2023年江苏省南京鼓楼实验中学九年级数学第一学期期末考试模拟试题含解析_第1页
2023年江苏省南京鼓楼实验中学九年级数学第一学期期末考试模拟试题含解析_第2页
2023年江苏省南京鼓楼实验中学九年级数学第一学期期末考试模拟试题含解析_第3页
2023年江苏省南京鼓楼实验中学九年级数学第一学期期末考试模拟试题含解析_第4页
2023年江苏省南京鼓楼实验中学九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江苏省南京鼓楼实验中学九年级数学第一学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为()A. B. C. D.2.如图,已知,,,的长为()A.4 B.6 C.8 D.103.已知点都在函数的图象上,则y1、y2、y3的大小关系是()A.y2>y1>y3 B.y1>y2>y3 C.y1>y3>y2 D.y3>y1>y24.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.55.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.﹣4ac>0 D.a+b+c<06.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=27.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条 B.4条C.5条 D.6条8.如图是抛物线y=a(x+1)2+2的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是()A.(,0) B.(1,0) C.(2,0) D.(3,0)9.如图,一只箱子沿着斜面向上运动,箱高AB=1.3cm,当BC=2.6m时,点B离地面的距离BE=1m,则此时点A离地面的距离是()A.2.2m B.2m C.1.8m D.1.6m10.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11二、填空题(每小题3分,共24分)11.计算:2sin245°﹣tan45°=______.12.小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD内作等边△BCE,并与正方形的对角线交于F、G点,制成了图中阴影部分的标志,则这个标志AFEGD的面积是_____.13.已知x=2是方程x2-a=0的解,则a=_______.14.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.15.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.16.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为.17.如图,内接于,若的半径为2,,则的长为_______.18.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.三、解答题(共66分)19.(10分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)20.(6分)如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.(1)求m、k、b的值;(2)连接OA、OB,计算三角形OAB的面积;(3)结合图象直接写出不等式的解集.21.(6分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.22.(8分)观察下列各式:﹣1×=﹣1+,﹣=﹣,﹣=﹣(1)猜想:﹣×=(写成和的形式)(2)你发现的规律是:﹣×=;(n为正整数)(3)用规律计算:(﹣1×)+(﹣)+(﹣)+…+(﹣×)+(﹣×).23.(8分)大雁塔是现存最早规模最大的唐代四方楼阁式砖塔,被国务院批准列人第一批全国重点文物保护单位,某校社会实践小组为了测量大雁塔的高度,在地面上处垂直于地面竖立了高度为米的标杆,这时地面上的点,标杆的顶端点,古塔的塔尖点正好在同一直线上,测得米,将标杆向后平移到点处,这时地面上的点,标杆的顶端点,古塔的塔尖点正好在同一直线上(点,点,点,点与古塔底处的点在同一直线上),这时测得米,米,请你根据以上数据,计算古塔的高度.24.(8分)如图,的三个顶点坐标分别是,,.(1)将先向左平移4个单位长度,再向上平移2个单位长度,得到,画出;(2)与关于原点成中心对称,画出.25.(10分)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.(1)根据图象直接写出y与x之间的函数关系式.(2)设这种商品月利润为W(元),求W与x之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?26.(10分)已知AB∥CD,AD、BC交于点O.AO=2,DO=3,CD=5,求AB的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先证明△ABD为等边三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,从而求出BC和BD的比值,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到上部圆锥的侧面积.【详解】解:∵∠A=60°,AB=AD,

∴△ABD为等边三角形,

∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,

∴∠CBD=30°,而CB=CD,

∴△CBD为底角为30°的等腰三角形,过点C作CE⊥BD于点E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圆锥与下面圆锥的底面相同,

∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,

∴下面圆锥的侧面积=.

故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.2、D【分析】根据平行线分线段成比例得到,即,可计算出.【详解】解:,即,解得.故选D【点睛】本题主要考查平行线段分线段成比例定理,熟练掌握并灵活运用定理是解题的关系.3、A【分析】根据反比例函数图象上点的坐标特征,将点分别代入函数,求得的,然后比较它们的大小.【详解】解:把分别代入:∵>>,∴>>故选:A.【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键.4、B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.5、D【解析】试题分析:根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.考点:二次函数图象与系数的关系6、B【分析】根据抛物线的对称轴公式:计算即可.【详解】解:抛物线y=x2+2x+3的对称轴是直线故选B.【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.7、D【详解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6条线段为1.故选D.8、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(−3,0);将(−3,0)代入y=a(x+1)2+2,可得a(−3+1)2+2=0,解得a=−;所以抛物线的表达式为y=−(x+1)2+2;当y=0时,可得−(x+1)2+2=0,解得x1=1,x2=−3,所以该抛物线在y轴右侧部分与x轴交点的坐标是(1,0).故选B.9、A【分析】先根据勾股定理求出CE,再利用相似三角形的判定与性质进而求出DF、AF的长即可得出AD的长.【详解】解:由题意可得:AD∥EB,则∠CFD=∠AFB=∠CBE,△CDF∽△CEB,∵∠ABF=∠CEB=90°,∠AFB=∠CBE,∴△CBE∽△AFB,∴==,∵BC=2.6m,BE=1m,∴EC=2.4(m),即==,解得:FB=,AF=,∵△CDF∽△CEB,∴=,即解得:DF=,故AD=AF+DF=+=2.2(m),答:此时点A离地面的距离为2.2m.故选:A.【点睛】本题考查了勾股定理、相似三角形的判定和性质,利用勾股定理,正确利用相似三角形的性质得出FD的长是解题的关键.10、A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:

110°•(n-2)=3×360°

解得n=1.

故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.二、填空题(每小题3分,共24分)11、0【解析】原式==0,故答案为0.12、6-3【解析】首先过点G作GN⊥CD于N,过点F作FM⊥AB于M,由在边长为2的正方形ABCD内作等边△BCE,即可求得△BEC与正方形ABCD的面积,由直角三角形的性质,即可求得GN的长,即可求得△CDG的面积,同理即可求得△ABF的面积,又由S阴影=S正方形ABCD-S△ABF-S△BCE-S△CDG,即可求得阴影图形的面积.【详解】解:过点G作GN⊥CD于N,过点F作FM⊥AB于M,∵在边长为2的正方形ABCD内作等边△BCE,∴AB=BC=CD=AD=BE=EC=2,∠ECB=60°,∠ODC=45°,∴S△BEC=×2×=,S正方形=AB2=4,设GN=x,∵∠NDG=∠NGD=45°,∠NCG=30°,∴DN=NG=x,CN=NG=x,∴x+x=2,解得:x=﹣1,∴S△CGD=CD•GN=×2×(﹣1)=﹣1,同理:S△ABF=﹣1,∴S阴影=S正方形ABCD﹣S△ABF﹣S△BCE﹣S△CDG=4﹣(﹣1)﹣﹣(﹣1)=6﹣3.故答案为:6﹣3.【点睛】此题考查了正方形,等边三角形,以及直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意方程思想与数形结合思想的应用.13、4【分析】将x=2代入方程计算即可求出a的值.【详解】解:将x=2代入方程得:4-a=0,解得:a=4,故答案为:4.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14、【分析】根据题意利用相似三角形判定≌,并求出OC的值即有的最小值从而求解.【详解】解:如图∵∴≌∴∴点的路径是一段弧(以点为圆心的圆上)∴∴,∵∴∴所以的最小值【点睛】本题结合相似三角形相关性质考查最值问题,利用等边三角形以及勾股定理相关等进行分析求解.15、.【解析】试题分析:∵从1到9这九个自然数中一共有5个奇数,∴任取一个数是奇数的概率是:.故答案是.考点:概率公式.16、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.17、【分析】连接OB、OC,根据圆周角定理得到∠BOC=2∠A=90°,根据勾股定理计算即可.【详解】解:连接OB、OC,

由圆周角定理得,∠BOC=2∠A=90°,

∴利用勾股定理得:BC=.故答案为:【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理是解题的关键.18、-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得三、解答题(共66分)19、2.6米【解析】试题分析:过点C作CD⊥AB于点D,根据题意得出∠CAD=30°,∠CBD=60°,分别根据Rt△ACD和Rt△BCD的三角函数将AD和BD用含CD的代数式表示,然后根据AB=3得出答案.试题解析:过作于点∵探测线与地面的夹角为和,∴,,在Rt中,,∴,在Rt中,,∴,又∵∴解得,∴生命所在点的深度约为米.20、(1)m=1,k=1,b=-1;(1);(3)-1<x<0或x>1.【解析】试题分析:(1)先由反比例函数上的点A(1,1)求出m,再由点B(﹣1,n)求出n,则由直线经过点A、B,得二元一次方程组,求得m、k、b;(1)△AOB的面积=△BOC的面积+△AOC的面积;(3)由图象直接写出不等式的解集.试题解析:(1)由题意得:,m=1,当x=-1时,,∴B(-1,-1),∴,解得,综上可得,m=1,k=1,b=-1;(1)如图,设一次函数与y轴交于C点,当x=0时,y=-1,∴C(0,-1),∴;(3)由图可知,-1<x<0或x>1.考点:反比例函数与一次函数的交点问题.21、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;

(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【详解】解:(1)根据“同弧所对的圆周角相等”,

得∠A=∠D,∠C=∠ABD,

∴△AEC∽△DEB

(2)∵CD⊥AB,O为圆心,

∴BE=AB=3,

设⊙O的半径为r,

∵DE=1,则OE=r−1,

在Rt△OEB中,

由勾股定理得:OE2+EB2=OB2,

即:(r−1)2+32=r2,

解得r=1,即⊙O的半径为1.【点睛】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.22、(1)﹣;(2)﹣;(3)﹣.【分析】(1)根据所给式子进行求解即可;(2)根据已知式子可得到;(3)分别算出括号里的式子然后相加即可;【详解】解:(1)由所给的已知发现乘积的等于和,∴,故答案为;(2),故答案为;(3),,.【点睛】本题主要考查了找规律数字运算,准确计算是解题的关键.23、古塔的高度为64.5米.【分析】根据CD//AB,HG//AB可证明△EDC∽△EBA,△FHG∽△FBA,根据相似三角形的性质求出AB的长即可.【详解】∵CD//AB,HG//AB,∴△EDC∽△EBA,△FHG∽△FBA,∴,∵∴,即∴(米),∵,∴,∴AB=64.5.答:古塔的高度为64.5米.【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定定理是解题关键.24、答案见解析.【分析】(1)将的三个顶点进行平移得到对应点,再顺次连接即可求解;(2)找到△ABC的三个得到关于原点的对称点,再顺次连接即可求解.【详解】(1)为所求;(2)为所求.【点睛】此题主要考查坐标与图形,解题的关键是根据题意找到各顶点的对应点.25、(1)y=;(2)W=;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是1.【分析】(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,当60<x≤90时,设y与x之间的函数关系式为y=mx+n,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x2+210x-5400,得到当x=60时,W最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x2+390x-9000,得到当x=65时,W最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论