2023年吉林省农安县普通中学九年级数学第一学期期末质量检测试题含解析_第1页
2023年吉林省农安县普通中学九年级数学第一学期期末质量检测试题含解析_第2页
2023年吉林省农安县普通中学九年级数学第一学期期末质量检测试题含解析_第3页
2023年吉林省农安县普通中学九年级数学第一学期期末质量检测试题含解析_第4页
2023年吉林省农安县普通中学九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年吉林省农安县普通中学九年级数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为()A.2 B. C.4 D.2.要使有意义,则x的取值范围为()A.x≤0 B.x≥-1 C.x≥0 D.x≤-13.如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°4.已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()A. B.C. D.5.已知二次函数(是常数),下列结论正确的是()A.当时,函数图象经过点B.当时,函数图象与轴没有交点C.当时,函数图象的顶点始终在轴下方D.当时,则时,随的增大而增大.6.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.7.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.8.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.π B. C. D.9.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.10.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.511.从1到9这9个自然数中任取一个,是偶数的概率是()A. B. C. D.12.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.14.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.15.若、是方程的两个实数根,代数式的值是______.16.如图,矩形中,边长,两条对角线相交所成的锐角为,是边的中点,是对角线上的一个动点,则的最小值是_______.17.如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.18.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为___________三、解答题(共78分)19.(8分)如图,抛物线交轴于点和点,交轴于点.(1)求这个抛物线的函数表达式;(2)若点的坐标为,点为第二象限内抛物线上的一个动点,求四边形面积的最大值.20.(8分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.(1)求证:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;(3)如果∠CAD=60°,DC=DE,求证:AE=AF.21.(8分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)22.(10分)我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知的两条弦,则、互为“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半径为5,一条弦,则弦的“十字弦”的最大值为______,最小值为______.(2)如图1,若的弦恰好是的直径,弦与相交于,连接,若,,,求证:、互为“十字弦”;(3)如图2,若的半径为5,一条弦,弦是的“十字弦”,连接,若,求弦的长.23.(10分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?24.(10分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求的值.25.(12分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)26.如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】连接OB、OC,证明△OBC是等边三角形,得出即可求解.【详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴,故选:D.【点睛】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.2、B【分析】根据二次根式有意义有条件进行求解即可.【详解】要使有意义,则被开方数要为非负数,即,∴,故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.3、C【详解】∵,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.4、B【分析】先由勾股定理计算出BO,OD,进而求出△AMN的面积.从而就可以得出0≤t≤4时的函数解析式;再得出当4<t≤8时的函数解析式.【详解】解:连接BD交AC于点O,令直线l与AD或CD交于点N,与AB或BC交于点M.∵菱形ABCD的周长为20cm,∴AD=5cm.∵AC=8cm,∴AO=OC=4cm,由勾股定理得OD=OB==3cm,分两种情况:(1)当0≤t≤4时,如图1,MN∥BD,△AMN∽△ABD,∴,,∴MN=t,∴S=MN·AE=t·t=t2函数图象是开口向上,对称轴为y轴且位于对称轴右侧的抛物线的一部分;(2)当4<t≤8时,如图2,MN∥BD,∴△CMN∽△CBD,∴,,MN=t+12,∴S=S菱形ABCD-S△CMN==t2+12t-24=(t-8)2+24.函数图象是开口向下,对称轴为直线t=8且位于对称轴左侧的抛物线的一部分.故选B.【点睛】本题是动点函数图象题型,当某部分的解析式好写时,可以写出来,结合排除法,答案还是不难得到的.5、D【分析】将和点代入函数解析式即可判断A选项;利用可以判断B选项;根据顶点公式可判断C选项;根据抛物线的增减性质可判断D选项.【详解】A.将和代入,故A选项错误;B.当时,二次函数为,,函数图象与轴有一个交点,故B选项错误;C.函数图象的顶点坐标为,即,当时,不一定小于0,则顶点不一定在轴下方,故C选项错误;D.当时,抛物线开口向上,由C选项得,函数图象的对称轴为,所以时,随的增大而增大,故D选项正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、根的判别式以及抛物线与x轴的交点,掌握抛物线的对称轴、开口方向与系数之间的关系是解题的关键.6、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.7、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000963,这个数据用科学记数法可表示为9.63×.

故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、B【解析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴的长=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.10、C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.11、B【解析】∵在1到9这9个自然数中,偶数共有4个,∴从这9个自然数中任取一个,是偶数的概率为:.故选B.12、B【解析】分析:画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.详解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.二、填空题(每题4分,共24分)13、或1【分析】分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=110°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);【详解】解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图1所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或1;故答案为:或1.【点睛】本题主要考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理,掌握折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理是解题的关键.14、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.15、1【分析】先对所求代数式进行变形为,然后将代入方程中求出的值,根据根与系数的关系求出的值,最后代入即可求解.【详解】∵是方程的根∴∴∵、是方程的两个实数根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程的根,根与系数的关系,掌握根与系数的关系,能够对所求代数式进行适当变形是解题的关键.16、【分析】根据对称性,作点B关于AC的对称点B′,连接B′M与AC的交点即为所求作的点P,再求直角三角形中30的临边即可.【详解】如图,作点B关于AC的对称点B′,连接B′M,交AC于点P,∴PB′=PB,此时PB+PM最小,∵矩形ABCD中,两条对角线相交所成的锐角为60,∴△ABP是等边三角形,∴∠ABP=60,∴∠B′=∠B′BP=30,∵∠DBC=30,∴∠BMB′=90,在Rt△BB′M中,BM=4,∠B′=30°,∴BB’=2BM=8∴B′M=,∴PM+PB′=PM+PB=B′M=4.故答案为4.【点睛】本题主要考查了最短路线问题,解决本题的关键是作点B关于AC的对称点B′.17、或.【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.18、1.【详解】解:∵AB⊥x轴于点B,且S△AOB=2,∴S△AOB=|k|=2,∴k=±1.∵函数在第一象限有图象,∴k=1.故答案为1.【点睛】本题考查反比例函数系数k的几何意义.三、解答题(共78分)19、(1);(2)的最大值为.【分析】(1)根据A,B两点坐标可得出函数表达式;(2)设点,根据列出S关于x的二次函数表达式,再根据二次函数的性质求最值.【详解】解:(1)将A,B两点的坐标代入解析式得,解得故抛物线的表达式为:;(2)连接,设点,由(1)中表达式可得点,则,∵,故有最大值,当时,的最大值为.【点睛】本题主要考查二次函数表达式的求法以及二次函数的图像与性质,有一定的综合性.对于二次函数中的面积问题,常需用到“割补法”.20、(1)见解析;(2);(3)见解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.【详解】(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)证明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四边形ABCD内接于圆,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠AEB,∴AB=AE.∴AE=AF.【点睛】本题是圆的综合题,考查了圆内接四边形的性质,圆周角定理,相似三角形的判定与性质,等腰三角形的判定与性质,角平分线的性质,三角形的内角和定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.21、(1)经过第一次传球后,篮球落在丙的手中的概率为;(2)篮球传到乙的手中的概率为.【分析】(1)根据概率公式即可得出答案;

(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为;故答案为;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.22、(1)10,6;(2)见解析;(3).【分析】(1)根据“十字弦”定义可得弦的“十字弦”为直径时最大,当CD过A点或B点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH⊥CD,根据“十字弦”定义可得;(3)过O作OE⊥AB于点E,作OF⊥CD于点F,利用垂径定理得出OE=3,由正切函数得出AH=DH,设DH=x,在Rt△ODF中,利用线段和差将边长用x表示,根据勾股定理列方程求解.【详解】解:(1)当CD为直径时,CD最大,此时CD=10,∴弦的“十字弦”的最大值为10;当CD过A点时,CD长最小,即AM的长度,过O点作ON⊥AM,垂足为N,作OG⊥AB,垂足为G,则四边形AGON为矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)证明:如图,连接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直径,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互为“十字弦”.(3)如图,过O作OE⊥AB于点E,作OF⊥CD于点F,连接OA,OD,则四边形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,设DH=,则AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=【点睛】本题考查圆的相关性质,利用垂径定理,相似三角形等知识是解决圆问题的常用手段,对结合学过的知识和方法的基础上,用新的方法和思路来解决新题型或新定义的能力是解答此题的关键.23、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.【分析】(1)根据题意列出方程,解一元二次方程即可;(2)先根据利润

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论