版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年黑龙江省哈尔滨市南岗区第十七中学数学九上期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米2.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.103.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为()A.2 B.2 C.4 D.54.在平面直角坐标系中,反比例函数的图象经过第一、三象限,则的取值范围是()A. B. C. D.5.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为()A. B.C. D.6.如图,数轴上的点,,,表示的数分别为,,,,从,,,四点中任意取两点,所取两点之间的距离为的概率是()A. B. C. D.7.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.8.若点在反比例函数的图象上,且,则下列各式正确的是()A. B. C. D.9.二次函数的图像如图所示,它的对称轴为直线,与轴交点的横坐标分别为,,且.下列结论中:①;②;③;④方程有两个相等的实数根;⑤.其中正确的有()A.②③⑤ B.②③ C.②④ D.①④⑤10.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元 B.10元 C.11元 D.9元11.如图,抛物线的对称轴为直线,与轴的一个交点在和之间,下列结论:①;②;③;④若是该抛物线上的点,则;其中正确的有()A.1个 B.2个 C.3个 D.4个12.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部二、填空题(每题4分,共24分)13.P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC=________.14.若,则=___________.15.边心距是的正六边形的面积为___________.16.在平面直角坐标系中,若点与点关于原点对称,则__________.17.如图,在中,,,点在上,且,则______.______.18.二次函数的图象经过点(4,﹣3),且当x=3时,有最大值﹣1,则该二次函数解析式为_____.三、解答题(共78分)19.(8分)如图,,射线于点,是线段上一点,是射线上一点,且满足.(1)若,求的长;(2)当的长为何值时,的长最大,并求出这个最大值.20.(8分)在平面直角坐标系中有,为原点,,,将此三角形绕点顺时针旋转得到,抛物线过三点.(1)求此抛物线的解析式及顶点的坐标;(2)直线与抛物线交于两点,若,求的值;(3)抛物线的对称轴上是否存在一点使得为直角三角形.21.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.22.(10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)23.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.24.(10分)小刚将一黑一白两双相同号码的袜子放进洗衣机里,洗好后一只一只拿出晾晒,当他随意从洗衣机里拿出两只袜子时,请用树状图或列表法求恰好成双的概率.25.(12分)如图,在平面直角坐标系中,双曲线l:y=(x>0)过点A(a,b),B(2,1)(0<a<2);过点A作AC⊥x轴,垂足为C.(1)求l的解析式;(2)当△ABC的面积为2时,求点A的坐标;(3)点P为l上一段曲线AB(包括A,B两点)的动点,直线l1:y=mx+1过点P;在(2)的条件下,若y=mx+1具有y随x增大而增大的特点,请直接写出m的取值范围.(不必说明理由)26.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
参考答案一、选择题(每题4分,共48分)1、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【详解】如图,根据题意,易得△MBA∽△MCO,
根据相似三角形的性质可知,即,
解得AM=5m.
则小明的影子AM的长为5米.
故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.2、D【解析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.3、A【分析】连接BO,根据垂径定理得出BD,在△BOD中利用勾股定理解出OD,从而得出AD,在△ABD中利用勾股定理解出AB即可.【详解】连接OB,∵AO⊥BC,AO过O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【点睛】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质.4、B【分析】根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】反比例函数的图象经过第一、三象限故选B.【点睛】本题考查了反比例函数的性质:当时,图象分别分布在第一、三象限;当时,图象分别分布在第二、四象限.5、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将化为顶点式,得.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为,故选B.【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6、D【分析】利用树状图求出可能结果即可解答.【详解】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率==.故选D.【点睛】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.7、C【解析】试题解析:C.两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.8、C【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可.【详解】解:反比例函数为,函数图象在第二、四象限,在每个象限内,随着的增大而增大,又,,,.故选C.【点睛】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.9、A【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线∴b=-2a>0∵抛物线与y轴的交点在x轴下方,∴c<-1,∴abc>0,所以①错误;∵,对称轴为直线∴故,②正确;∵对称轴x=1,∴当x=0,x=2时,y值相等,故当x=0时,y=c<0,∴当x=2时,y=,③正确;如图,作y=2,与二次函数有两个交点,故方程有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c>0,当x=0时,y=c<-1∴3a>1,故,⑤正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.10、B【分析】设应降价x元,根据题意列写方程并求解可得答案.【详解】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【点睛】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.11、C【分析】根据抛物线的对称轴可判断①;由抛物线与x轴的交点及抛物线的对称性可判断②;由x=-1时y>0可判断③;根据抛物线的开口向下且对称轴为直线x=-2知图象上离对称轴水平距离越小函数值越大,可判断④.【详解】∵抛物线的对称轴为直线,
∴,所以①正确;
∵与x轴的一个交点在(-3,0)和(-4,0)之间,
∴由抛物线的对称性知,另一个交点在(-1,0)和(0,0)之间,
∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;
∵由②、①知,时y>0,且,
即>0,所以③正确;∵点与点关于对称轴直线对称,∴,∵抛物线的开口向下,且对称轴为直线,
∴当,函数值随的增大而减少,
∵,∴,∴,故④错误;综上:①②③正确,共3个,
故选:C.【点睛】本题考查了二次函数与系数的关系:对于二次函数,二次项系数a决定抛物线的开口方向和大小;一次项系数b和二次项系数a共同决定对称轴的位置;常数项c决定抛物线与y轴交点;抛物线与x轴交点个数由决定.12、D【分析】先根据条件x
2
-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x
2
-2x+d=0有实根,∴根的判别式△=(-2)
2
-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.二、填空题(每题4分,共24分)13、3:4:2【分析】将△APB绕A点逆时针旋转60得△AQC,显然有△AQC≌△APB,连PQ,可得△AQP是等边三角形,△QCP的三边长分别为PA,PB,PC,由∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,可得∠APB=100,∠BPC=120,∠CPA=140,可得答案.【详解】解:如图,将△APB绕A点逆时针旋转60得△AQC,显然有△AQC≌△APB,连PQ,AQ=AP,∠QAP=60,△AQP是等边三角形,PQ=AP,QC=PB,△QCP的三边长分别为PA,PB,PC,∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,∠APB=100,∠BPC=120,∠CPA=140,∠PQC=∠AQC-∠AQP=∠APB-∠AQP=100-60=40,∠QPC=∠APC-∠APQ=140-60=80,∠PCQ=180-(40+80)=60,∠PCQ:∠QPC:∠PQC=3:4:2,故答案为:3:4:2.【点睛】本题主要考查旋转的性质及等边三角形的性质,综合性大,注意运算的准确性.14、【分析】把所求比例形式进行变形,然后整体代入求值即可.【详解】,,;故答案为.【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.15、【分析】根据题意画出图形,先求出∠AOB的度数,证明△AOB是等边三角形,得出AB=OA,再根据直角三角形的性质求出OA的长,再根据S六边形=6S△AOB即可得出结论.【详解】解:∵图中是正六边形,∴∠AOB=60°.∵OA=OB,∴△OAB是等边三角形.∴OA=OB=AB,∵OD⊥AB,OD=,∴OA=∴AB=4,∴S△AOB=AB×OD=×2×=,∴正六边形的面积=6S△AOB=6×=6.故答案为:6.【点睛】本题考查的是正多边形和圆,熟知正六边形的性质并求出△AOB的面积是解答此题的关键.16、1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
∴a=-4,b=-3,
则ab=1.
故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.17、【分析】在Rt△ABC中,根据,可求得AC的长;在Rt△ACD中,设CD=x,则AD=BD=8-x,根据勾股定理列方程求出x值,从而求得结果.【详解】解:在Rt△ABC中,∵,∴AC=BC=1.设CD=x,则BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案为:1;.【点睛】本题考查解直角三角形,掌握相关概念是解题的关键.18、y=﹣2(x﹣3)2﹣1【分析】根据题意设出函数的顶点式,代入点(4,﹣3),根据待定系数法即可求得.【详解】∵当x=3时,有最大值﹣1,∴设二次函数的解析式为y=a(x﹣3)2﹣1,把点(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案为:y=﹣2(x﹣3)2﹣1.【点睛】本题考查了待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.三、解答题(共78分)19、(1);(2)当时,的最大值为1.【分析】(1)先利用互余的关系求得,再证明,根据对应边成比例即可求得答案;(2)设为,则,根据,求得,利用二次函数的最值问题即可解决.【详解】(1)如图,∵,∴,∴,∵,∴,∴,可知,∴,∵,∴,∴,∴;(2)设为,则,∵(1)可得,∴,∴,∴,∴当时,的最大值为1.【点睛】本题主要考查了相似三角形的判定和性质以及二次函数等综合知识,根据线段比例来求线段的长是本题解题的基本思路.20、(1);点;(2);(3)存在,Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【分析】(1)用待定系数法可求抛物线的解析式,进行配成顶点式即可写出顶点坐标;(2)将直线与抛物线联立,通过根与系数关系得到,,再通过得出,通过变形得出代入即可求出的值;(3)分:,,三种情况分别利用勾股定理进行讨论即可.【详解】(1)∵,,∵绕点顺时针旋转,得到,∴点的坐标为:,将点A,B代入抛物线中得解得∴此抛物线的解析式为:∵;∴点(2)直线:与抛物线的对称轴交点的坐标为,交抛物线于,,由得:∴,∵,∴∴∴∴∴(3)存在,或,,∴设点,若,则即∴或若,则即∴若,则即∴即Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,分情况讨论是解题的关键.21、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得.∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵BE∥轴,∴点E的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形22、OC=100米;PB=米.【分析】在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAB,利用60°的三角函数值以及坡度,求出OC,再分别表示出CF和PF,然后根据两者之间的关系,列方程求解即可.【详解】解:过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),由坡度=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【点睛】本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23、(1)详见解析;(1)详见解析.【分析】(1)分别作出A,C的对应点A1,C1即可得到△A1BC1;
(1)分别作出A,B,C的对应点A1,B1,C1即可得到△A1B1C1.【详解】(1)如图所示,△A1BC1即为所求.(1)如图所示,△A1B1C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石头上的植物课件
- 《选择的基本方法》课件
- 苏教版yw课件教学课件
- 基于2024年度预算的办公用品采购合同
- 护士礼仪教学课件
- 动物课件模板
- 二零二四年度钢筋混凝土工程验收与评估合同2篇
- 农村房屋赠送协议书
- 《建筑工程下篇》课件
- 维修设备的技术协议
- 2024年广西公需科目参考答案
- 硬件研发工程师生涯人物访谈报告
- 网络传播法规(自考14339)复习必备题库(含答案)
- 中医保健温通灸
- 剪纸艺术进校园活动简报
- 浅谈小学数学教学中如何培养学生的核心素养
- 小学入门数独100题(简单)
- 谈数学课堂中倾听教育的策略(徐艳)
- 首都经济贸易大学本科毕业论文格式模板范文
- 毛丝产生要因分析及解决方案
- 燃油加油机比武试题
评论
0/150
提交评论