2023年湖北省十堰市名校九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2023年湖北省十堰市名校九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2023年湖北省十堰市名校九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2023年湖北省十堰市名校九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2023年湖北省十堰市名校九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年湖北省十堰市名校九年级数学第一学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球 B.至少有1个球是白球C.至少有2个球是红球 D.至少有2个球是白球2.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.3.下列四张扑克牌图案,属于中心对称图形的是()A. B. C. D.4.如图,是的外接圆,是的直径,若的半径是,,则()A. B. C. D.5.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.6.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离7.如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等于()A. B. C. D.8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗9.已知一元二次方程x2+kx﹣5=0有一个根为1,k的值为()A.﹣2 B.2 C.﹣4 D.410.已知压强的计算公式是p=,我们知道,刀具在使用一段时间后,就会变钝.如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()A.当受力面积一定时,压强随压力的增大而增大B.当受力面积一定时,压强随压力的增大而减小C.当压力一定时,压强随受力面积的减小而减小D.当压力一定时,压强随受力面积的减小而增大11.已知函数是反比例函数,则此反比例函数的图象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限12.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:DB=4:5,下列结论中正确的是A. B. C. D.二、填空题(每题4分,共24分)13.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到14.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.15.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.16.如图,四边形ABCD是矩形,,,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是________.17.若关于x的一元二次方程的一个根为1,则k的值为__________.18.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°三、解答题(共78分)19.(8分)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.1.)20.(8分)已知反比例函数和一次函数.(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;(2)当时,两个函数的图象只有一个交点,求的值.21.(8分)如图,AC是⊙O的一条直径,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.22.(10分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.23.(10分)已知关于的一元二次方程(是常量),它有两个不相等的实数根.(1)求的取值范围;(2)请你从或或三者中,选取一个符合(1)中条件的的数值代入原方程,求解出这个一元二次方程的根.24.(10分)已知在中,,,,为边上的一点.过点作射线,分别交边、于点、.(1)当为的中点,且、时,如图1,_______:(2)若为的中点,将绕点旋转到图2位置时,_______;(3)若改变点到图3的位置,且时,求的值.25.(12分)2020年元且,某商场为促销举办抽奖活动.规则如下:在一个不透明的纸盒里,装有2个红球和2个黑球,这些球除颜色外都相同.顾客每次摸出1个球,若摸到红球,则获得一份奖品;若摸到黑球,则没有奖品.(1)如果张大妈只有一次摸球机会,那么张大妈获得奖品的概率是.(2)如果张大妈有两次摸球机会(摸出后不放回),请用“树状图”或“列表”的方法,求张大妈获得两份奖品的概率.26.已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.

参考答案一、选择题(每题4分,共48分)1、B【解析】A.至少有1个球是红球是随机事件,选项错误;B.至少有1个球是白球是必然事件,选项正确;C.至少有2个球是红球是随机事件,选项错误;D.至少有2个球是白球是随机事件,选项错误.故选B.2、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.3、B【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.4、A【分析】连接CD,得∠ACD=90°,由圆周角定理得∠B=∠ADC,进而即可得到答案.【详解】连接CD,∵AD是直径,∴∠ACD=90°,∵的半径是,∴AD=3,∵∠B=∠ADC,∴,故选A.【点睛】本题主要考查圆周角定理以及正弦三角函数的定义,掌握圆周角定理以及正弦三角函数的定义,是解题的关键.5、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.6、C【解析】分析:首先画出图形,根据点的坐标得到圆心到X轴的距离是4,到Y轴的距离是3,根据直线与圆的位置关系即可求出答案.解答:解:圆心到X轴的距离是4,到y轴的距离是3,4=4,3<4,∴圆与x轴相切,与y轴相交,故选C.7、D【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【详解】根据题意:在Rt△ABC中,,则,在Rt△ACD中,,则,∴.故选:D.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.8、B【解析】试题解析:由题意得,解得:.故选B.9、D【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于k的一次方程1﹣5+k=0,然后解一次方程即可.【详解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故选:D.【点睛】本题考查一元二次方程的解.熟记一元二次方程解得定义是解决此题的关键.10、D【解析】如果刀刃磨薄,指的是受力面积减小;刀具就会变得锋利指的是压强增大.故选D.11、A【分析】首先根据反比例函数的定义,即可得出,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【详解】根据已知条件,得即∴函数解析式为∴此反比例函数的图象在第一、三象限故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.12、B【分析】根据平行线分线段成比例,相似三角形性质,以及合比性质,分别对每个选项进行判断,即可得到答案.【详解】解:如图,在△ABC中,DE∥BC,AD∶DB=4∶5,则∴△ADE∽△ABC,∴,故A错误;则,故B正确;则,故C错误;则,故D错误.故选择:B.【点睛】本题考查了相似三角形的性质,平行线分线段成比例,合比性质,解题的关键是熟练掌握平行线分线段成比例的性质.二、填空题(每题4分,共24分)13、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.14、2【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用.15、【分析】已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.【详解】解:二次函数中,顶点坐标为:,设顶点坐标为(x,y),∴①,②,由①2+②,得,∴;故答案为:.【点睛】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.16、.【分析】根据题意可以求得和的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与的面积之差的和,本题得以解决.【详解】解:连接AE,∵,,,∴,∴,∴,,∴,∴阴影部分的面积是:,故答案为.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17、0【解析】把x=1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.18、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.三、解答题(共78分)19、(1)167.79;(2)能.理由见解析.【分析】(1)过点M作MD⊥AC交AC的延长线于D,设DM=x.由三角函数表示出CD和AD的长,然后列出方程,解方程即可;(2)作∠DMF=30°,交l于点F.利用解直角三角形求出DF的长度,然后得到AF的长度,与AB进行比较,即可得到答案.【详解】解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x.∵在Rt△CDM中,CD=DM·tan∠CMD=x·tan22°,又∵在Rt△ADM中,∠MAC=45°,∴AD=DM=x,∵AD=AC+CD=100+x·tan22°,∴100+x·tan22°=x.∴(米).答:轮船M到海岸线l的距离约为167.79米.(2)作∠DMF=30°,交l于点F.在Rt△DMF中,有:DF=DM·tan∠FMD=DM·tan30°=DM≈≈96.87米.∴AF=AC+CD+DF=DM+DF≈167.79+96.87=264.66<2.∴该轮船能行至码头靠岸.【点睛】本题考查了方向角问题.注意准确构造直角三角形是解此题的关键.20、(1);(2)【分析】(1)根据两个函数图象的交点的横坐标是-2和3先求出两个交点坐标,然后把两点代入一次函数解析式求出k,b值,即可得到一次函数解析式;

(2)两个函数解析式联立组成方程组消去y得到关于x的一元二次方程,根据判别式=0求出b的值.【详解】解:(1)把-2和3分别代入中,得:和.把,代入中,.∴一次函数表达式为:;(2)当,则,联立得:,整理得:,只有一个交点,即,则,得.故b的值为4或-4.【点睛】本题主要考查待定系数法求函数解析式和函数交点坐标的求法,先利用反比例函数解析式求出两交点坐标是解本题的关键.21、(1)见解析;(2)AD=.【分析】(1)由切线的性质可得∠BAE+∠MAB=90°,进而得∠AEB+∠AMB=90°,由等腰三角形的性质得∠MAB=∠AMB,继而得到∠BAE=∠AEB,根据等角对等边即可得结论;(2)连接BC,根据直径所对的圆周角是直角可得∠ABC=90°,利用勾股定理可求得BC=8,证明△ABC∽△EAM,可得∠C=∠AME,,可求得AM=,再由圆周角定理以及等量代换可得∠D=∠AMD,继而根据等角对等边即可求得AD=AM=.【详解】(1)∵AP是⊙O的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°,又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2)连接BC,∵AC是⊙O的直径,∴∠ABC=90°在Rt△ABC中,AC=10,AB=6,∴BC==8,由(1)知,∠BAE=∠AEB,又∠ABC=∠EAM=90°,∴△ABC∽△EAM,∴∠C=∠AME,,即,∴AM=,又∵∠D=∠C,∴∠D=∠AMD,∴AD=AM=.【点睛】本题考查了切线的性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理等知识,准确识图,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.22、(1)补图见解析;(2)90,直径所对的圆周角是直角.【分析】(1)根据要求作出图形即可.

(2)根据线段的垂直平分线的性质以及圆周角定理证明即可.【详解】解:(1)如图线段CM即为所求.

证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC==90°(直径所对的圆周角是直角

),∴CM⊥AB.即CM就是AB边上的高线.故答案为:90°,直径所对的圆周角是直角.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1);(2),【分析】(1)由一元二次方程有两个不相等的实数根,根据根的判别式,建立关于k的不等式,即可求出k的取值范围;(2)在k的取值范围内确定一个k的值,代入求得方程的解即可.【详解】解:(1)由题意,得整理,得,所以的取值范围是;(2)由(1),知,所以在或或三者中取,将代入原方程得:,化简得:,因式分解得:,解得两根为,.【点睛】本题考查了一元二次方程根的判别式及因式分解法解一元二次方程的知识,题目难度一般,需要注意计算的准确度和正确确定k的值.24、(1)2;(2)2;(3)【分析】(1)由为的中点,结合三角形的中位线的性质得到从而可得答案;(2)如图,过作于过作于结合(1)求解再证明利用相似三角形的性质可得答案;(3)过点分别作于点,于点,证明,可得再证明,利用相似三角形的性质求解同法求解从而可得答案.【详解】解:(1)为的中点,故答案为:(2)如图,过作于过作于由(1)同理可得:故答案为:(3)过点分别作于点,于点,∵,∴.∵,∴.∴.∴.∴.∵,,∴.∴∴.∵,∴.∵,∴.∴.同理可得:.∴.【点睛】本题考查的是矩形的性质,三角形中位线的判定与性质,相似三角形的判定与性质,掌握以上知识是解题的关键.25、(1);(2).【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的球是红球的结果数,然后根据概率公式求解.【详解】(1)从布袋中任意摸出1个球,摸出是红球的概率==

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论