版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年河南省驻马店市平舆县数学九上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在中,∠C=90°,∠A=2∠B,则的值是()A. B. C. D.2.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为()A. B. C. D.3.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定4.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是()A.①②③④ B.④③②① C.④③①② D.②③④①5.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.9 B.12π﹣9 C. D.6π﹣6.如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B.2 C. D.7.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2 B.2 C.−4 D.48.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生9.一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是.如果袋中共有32个小球,那么袋中的红球有()A.4个 B.6个 C.8个 D.10个10.在RtABC中,∠C=90°,如果,那么的值是()A.90° B.60° C.45° D.30°11.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°12.若关于的一元二次方程的一个根是1,则的值为()A.-2 B.1 C.2 D.0二、填空题(每题4分,共24分)13.将一元二次方程变形为的形式为__________.14.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=_____.15.方程x2﹣2x+1=0的根是_____.16.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.17.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)18.已知(a+b)(a+b﹣4)=﹣4,那么(a+b)=_____.三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).20.(8分)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=1.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.21.(8分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.22.(10分)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′,若反比例函数的图像恰好经过A′B的中点D,求这个反比例函数的解析式.23.(10分)如图,在△ABC中,AB=AC,点D为BC的中点,经过AD两点的圆分别与AB,AC交于点E、F,连接DE,DF.(1)求证:DE=DF;(2)求证:以线段BE+CF,BD,DC为边围成的三角形与△ABC相似,24.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(12分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.26.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形内角和定理求出∠A的值,运用特殊角的三角函数值计算即可.【详解】∵∠A+∠B+∠C=180°,∠A=2∠B,∠C=90°,
∴2∠B+∠B+90°=180°,∴∠B=30°,∴∠A=60°,∴.故选:C.【点睛】本题考查了三角形内角和定理的应用以及特殊角的三角函数值,准确掌握特殊角的三角函数值是解题关键.2、A【分析】根据题意,让白球的个数除以球的总数即为摸到白球的概率.【详解】解:根据题意,袋子中有4个黑球和3个白球,∴摸到白球的概率为:;故选:A.【点睛】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.3、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.4、C【分析】太阳光线下的影子是平行投影,就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东,于是即可得到答案.【详解】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东”,是解题的关键.5、A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴CD=3,∴S弓形AD=S扇形ADO﹣S△ADO6×36π﹣9,∴S弓形OD=6π﹣9,阴影部分的面积=S扇形BDO﹣S弓形OD(6π﹣9)=9.故选:A.【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.6、D【分析】首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,
∴tan∠BFE=.故选:D【点睛】此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.7、B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,
解得k=1.
故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8、D【分析】利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;
B、不可能发生的事件发生的概率为0,正确;
C、随机事件发生的概率大于0且小于1,正确;
D、概率很小的事件也有可能发生,故错误,
故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.9、C【解析】根据概率公式列方程求解即可.【详解】解:设袋中的红球有x个,根据题意得:,解得:x=8,故选C.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、C【分析】根据锐角三角函数的定义解得即可.【详解】解:由已知,,∵∴∵∠C=90°∴=45°故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.11、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.12、C【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0
解得:a=1.
故选C.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.二、填空题(每题4分,共24分)13、【分析】根据完全平方公式配方即可.【详解】解:故答案为:.【点睛】此题考查的是配方法,掌握完全平方公式是解决此题的关键.14、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点睛】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.15、x1=x2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x﹣1)2=0,解得:x1=x2=1.故答案是:x1=x2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.16、【解析】根据概率的概念,由符合条件的人数除以样本容量,可得P(在日常生活中进行垃圾分类)==.故答案为.17、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,
则≈0.618,
解得:x≈1,且符合题意.
故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.18、2【分析】设a+b=t,根据一元二次方程即可求出答案.【详解】解:设a+b=t,原方程化为:t(t﹣4)=﹣4,解得:t=2,即a+b=2,故答案为:2【点睛】本题考查换元法及解一元二次方程,关键在于整体换元,简化方程.三、解答题(共78分)19、见解析【分析】根据反比例函数的性质、一次函数的性质及三角形的面积公式即可求解.【详解】解:①求反比例函数的解析式设反比例函数解析式为将A(-2,1)代入得k=-2所以反比例函数的解析式为②求B点的坐标.(或n的值)将x=1代入得y=-2所以B(1,-2)③求一次函数解析式设一次函数解析式为y=kx+b将A(-2,1)B(1,-2)代入得解得所以一次函数的解析式为y=-x-1④利用图像直接写出当x为何值时一次函数值等于反比例函数值.x=-2或x=1时⑤利用图像直接写出一次函数值大于反比例函数值时,x的取值范围.x<-2或0<x<1⑥利用图像直接写出一次函数值小于反比例函数值时,x的取值范围.-2<x<0或x>1⑦求C点的坐标.将y=0代入y=-x-1得x=-1所以C点的坐标为(-1,0)⑧求D点的坐标.将x=0代入y=-x-1得y=-1所以D点的坐标为(0,-1)⑨求AOB的面积=+=+=【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知反比例函数的性质.20、(1)详见解析;(2)99或2.【解析】(1)首先由题意可得a+c=b,将欢喜数展开,因为要证明“欢喜数”能被99整除,所以将展开式中100a拆成99a+a,这样展开式中出现了a+c,将a+c用b替代,整理出最终结果即可;(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F(m)﹣F(n)=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除;(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=2.∴若F(m)﹣F(n)=3,则m﹣n的值为99或2.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.21、(1)5cm;(1)最大值是800cm1.【分析】(1)设剪掉的正方形的边长为x
cm,则AB=(40-1x)cm,根据盒子的底面积为484cm1,列方程解出即可;(1)设剪掉的正方形的边长为x
cm,盒子的侧面积为y
cm1,侧面积=4个长方形面积;则y=-8x1+160x,配方求最值.【详解】(1)设剪掉的正方形的边长为xcm,则(40﹣1x)1=900,即40﹣1x=±30,解得x1=35(不合题意,舍去),x1=5;答:剪掉的正方形边长为5cm;(1)设剪掉的正方形的边长为xcm,盒子的侧面积为ycm1,则y与x的函数关系式为y=4(40﹣1x)x,即y=﹣8x1+160x,y=﹣8(x﹣10)1+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm1.【点睛】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.22、.【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(−2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数的图象经过点D,∴这个反比例函数的解析式【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、(1)详见解析;(2)详见解析【分析】(1)连接AD,证明∠BAD=∠CAD即可得出,则结论得出;(2)在AE上截取EG=CF,连接DG,证明△GED≌△CFD,得出DG=CD,∠EGD=∠C,则可得出结论△DBG∽△ABC.【详解】(1)证明:连接AD,∵AB=AC,BD=DC,∴∠BAD=∠CAD,∴,∴DE=DF.(2)证明:在AE上截取EG=CF,连接DG,∵四边形AEDF内接于圆,∴∠DFC=∠DEG,∵DE=DF,∴△GED≌△CFD(SAS),∴DG=CD,∠EGD=∠C,∵AB=AC,∴∠B=∠C,∴△DBG∽△ABC,即以线段BE+CF,BD,DC为边围成的三角形与△ABC相似.【点睛】本题考查了圆的综合问题,熟练掌握圆的内接四边形性质与相似三角形的判定是解题的关键.24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业清洁分包合同模板
- 钢材交易合同定制
- 监理招标文件范本模板宝典
- 临时散工劳务外包合同
- 大理石采购合同的规范格式
- 权利保证书在劳动合同纠纷中的应用
- 搬家清洁服务协议
- 招标资料专业制作
- 土建工程分包合作协议
- 正品保障销售保证
- 运输车辆卫生安全检查记录表
- 侨界领袖陈嘉庚(共33张PPT)
- 配电房、发电房安全技术操作规程
- 水利工程实验室量测作业指导书
- 房建装修修缮工程量清单
- 徕卡v lux4中文说明书大约工作时间和可拍摄图像数量
- 格力2匹柜机检测报告KFR-50LW(50530)FNhAk-B1(性能)
- 分级护理制度考试题及答案
- 高考作文模拟写作:“德”与“得”导写及范文
- 意向性和と思う课件 高考日语复习
- 江苏专转本《大学语文》考纲
评论
0/150
提交评论