版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.1古典概型基本事件基本事件的特点:任何两个基本事件是互斥的任何事件都可以表示成基本事件的和。练习1、把一枚骰子抛6次,设正面出现的点数为x1、求出x的可能取值情况2、下列事件由哪些基本事件组成(1)x的取值为2的倍数(记为事件A)(2)x的取值大于3(记为事件B)(3)x的取值为不超过2(记为事件C)例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:
A={a,b},B={a,c},
C={a,d},D={b,c},
E={b,d},F={c,d},上述试验和例1的共同特点是:(1)试验总所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等我们将具有这两个特点的概率模型称为古典概率模型,简称古典概率。思考?在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?对于古典概型,任何事件的概率为:P(A)=A包含的基本事件的个数基本事件的总数例2单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案。如果考生掌握了考察的内容,它可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件只有4个,考生随机的选择一个答案是选择A、B、C、D的可能性是相等的,由古典概型的概率计算公式得:
P(“答对”)=“答对”所包含的基本事件的个数
4
=1/4=0.25
假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定的知识的可能性大?可以运用极大似然法的思想解决。假设他每道题都是随机选择答案的,可以估计出他答对17道题的概率为可以发现这个概率是很小的;如果掌握了一定的知识,绝大多数的题他是会做的,那么他答对17道题的概率会比较大,所以他应该掌握了一定的知识。答:他应该掌握了一定的知识探究在标准化的考试中既有单选题又有多选题,多选题从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?我们探讨正确答案的所有结果:如果只要一个正确答案是对的,则有4种;如果有两个答案是正确的,则正确答案可以是(A、B)(A、C)(A、D)(B、C)(B、D)(C、D)6种如果有三个答案是正确的,则正确答案可以是(A、B、C)(A、C、D)(A、B、D)(B、C、D)4种所有四个都正确,则正确答案只有1种。正确答案的所有可能结果有4+6+4+1=15种,从这15种答案中任选一种的可能性只有1/15,因此更难猜对。例3同时掷骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?1点2点3点4点5点6点1点2345672点3456783点4567894点56789105点678910116点789101112解(1)掷一个骰子的结果有6种。我们把两个标上记号1、2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3)(3,2)(4,1)其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
P(A)=4/36=1/9思考?为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?例4、假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,……,9十个数字中的任意一个。假设一个人完全忘记了自己的储蓄卡密码,问他在自动提款机上随机试一次密码就能取到钱的概率试多少?解:这个人随机试一个密码,相当做1次随机试验,试验的基本事件(所有可能的结果)共有10000种。由于是假设的随机的试密码,相当于试验的每一个结果试等可能的。所以P(“能取到钱”)=“能取到钱”所包含的基本事件的个数
10000
=1/10000=0.0001例5、某种饮料每箱装12听,如果其中有2听不合格,问质检人员从中随机抽取2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的10听分别记作:1,2,……,10,不合格的2听记作a、b,只要检测的2听中有1听不合格,就表示查出了不合格产品。分为两种情况,1听不合格和2听都不合格。1听不合格:合格产品从10听中选1听,不合格产品从2听中选1听,所以包含的基本事件数为10x2=202听都不合格:包含的基本事件数为1。所以检测出不合格产品这个事件所包含的基本事件数为20+1=21。因此检测出不合格产品的概率为探究随着检测听数的增加,查出不合格产品的概率怎样变化?为什么质检人员都采用抽查的方法而不采用逐个检查的方法?检测的听数和不合格产品的概率如下表检测听数123456概率0.1670.3180.4550.5760.6820.7737891011120.8480.9090.9550.98511在实际问题中,质检人员一般采用抽查方法而不采用逐个检查的方法的原因有两个:第一可以从抽查的样品中次品出现的情况把握总体中次品出现的情况;第二采用逐个抽查一般是不可能的,也是不现实的。3.2.2(整数值)随机数的产生1、选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1。2、选定A1格,按Ctrl+C快捷键,然后选定要随机产生0、1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样我们很快就得到了100个随机产生的0,1,相当于做了100次随机试验。3、选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数,与就是反面朝上的频数。4、选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率。例6天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?解:我们通过设计模拟试验的方法来解决问题,利用计算器或计算机可以产生0到9之间去整数值的随机数,我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,这样可以体现下雨的概率是40%。因为是3天,所以每三天随机数作为一组。例如,产生20组随机数
966191925271
932
812458569683257393027556488730113537989
就相当于作了20次试验。在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两天下雨,他们分别是191,271,932,612,393,即共有5个数。我们得到三天中恰有两天下雨的概率近似为5/20=25%
;/聚星娱乐mqx93jop有眼啊!”尚武说:“我爹娘就常对我和哥哥姐姐说,老天是最公平的了,好人必有好报;即使有的时候看到不是这样,那也只是因为时辰未到;只要时辰一到,好报必然就到了!”耿老爹和郭氏都点点头,说:“是这样的!”看到尚武不急着进屋,郭氏就对耿兰说:“兰儿,天儿很暖和呢,你和三哥在院儿里转转看看哇,俺和你爹先进屋去了!”于是,耿兰就陪着尚武在院子各处走走看看。尚武看到南房与西房之间的那棵高大的白杨树上飘落下来很多褐色的毛穗穗,就像小孩子一样高兴地捡拾起来几个,说:“兰妹妹,这多像毛毛虫啊!”耿兰说:“岂只是像毛毛虫,它们还有其它用场呢!”说着也捡拾起来四个,并将它们分别塞到自己的耳朵眼儿和鼻孔眼儿里,学着老头子的声音说:“小娃娃,你看老夫多大年纪了?”滑稽的模样逗得尚武哈哈大笑,说:“老爷爷您八十岁了!快拿掉哇,你把鼻子眼儿堵住了,怎么出气啊!”耿兰拿掉了塞在鼻孔眼儿里的毛穗穗,但两边耳朵眼儿里塞着的还在晃荡着。尚武替她把这两个也拿掉,说:“刚才我听见那个什么,二狗和大头,都叫咱爹老爹叔?”耿兰说:“是啊,他们都叫咱爹老爹叔了。怎么着啊?”尚武自言自语地说:“还有这么叫的!”耿兰说:“这算什么啊,还有管咱爹叫老爹伯、老爹爷、甚至老爹老爷爷的呢!”见尚武皱起了眉头,耿兰忽然明白了,说:“哦,三哥,俺知道你的疑问了!是这样,人们都将‘老爹’当成了咱爹的名字了,再加上叔叔、伯伯、爷爷什么的称呼,不就成了老爹叔、老爹伯、老爹爷了嘛!”尚武笑了,说:“原来是这样啊!我知道了。好了,咱们也回屋里去!”俩人进了堂屋一看,耿英已经把上午大家喝的残茶、杯子,碗什么的,都收拾得差不离儿了。耿兰赶快说:“姐姐你歇着哇,这些由俺来收拾就行了!”耿英说:“姐不累,这些年都是你帮着娘了,以后就让姐多做一些哇!”郭氏进两边厢房里转一圈出来,问耿英:“小直子呢?”耿英说:“他呀,从这个屋子出来,又进了那个屋子,正在到处看呢!”郭氏说:“这个傻小子,咱家里什么也没有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国电震机市场调查研究报告
- 2025年度公司单位员工劳动合同续签与变更流程规范3篇
- 2025年度年度果树种植技术培训果园土地承包协议3篇
- 2024年中国浸槽式显影机市场调查研究报告
- 2024年中国汽车刹车板市场调查研究报告
- 2024年中国桶升降机市场调查研究报告
- 2024年中国松香顺丁烯二酸酐酯市场调查研究报告
- 2024年名片底荷花笔筒项目可行性研究报告
- 2025年度智能校园安全监控合同3篇
- 2024至2030年普通小球阀项目投资价值分析报告
- 浙江省杭州市余杭区2023-2024学年五年级上学期期末英语试卷
- 中医调节内分泌的方法
- 2020年山西省公务员录用考试《行测》真题及答案
- JTG 3441-2024公路工程无机结合料稳定材料试验规程
- JJF(新) 106-2023 微波消解仪温度、压力参数校准规范
- 《厨政管理说课》课件
- 安徽省合肥市包河区四十八中学2023-2024学年数学七年级第一学期期末学业质量监测试题含解析
- 春节家族祭祀活动策划方案
- 空气源热泵冷暖空调、热水项目施工方案
- 《行政组织学》期末复习指导
- 广东省佛山市2022-2023学年高一上学期期末考试英语试题(含答案)
评论
0/150
提交评论