




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年梅州市重点中学九年级数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+4(a≠0)中,若b2=4a,则()A.y最大=5 B.y最小=5 C.y最大=3 D.y最小=32.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁3.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.4.下列是我国四大银行的商标,其中不是轴对称图形的是()A. B. C. D.5.在下列命题中,真命题是()A.相等的角是对顶角 B.同位角相等C.三角形的外角和是 D.角平分线上的点到角的两边相等6.一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是()A.掷一次这枚骰子,向上一面的点数小于5B.掷一次这枚骰子,向上一面的点数等于5C.掷一次这枚骰子,向上一面的点数等于6D.掷一次这枚骰子,向上一面的点数大于67.下列命题为假命题的是()A.直角都相等 B.对顶角相等C.同位角相等 D.同角的余角相等8.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D9.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下 B.对称轴是y轴C.经过原点 D.在对称轴右侧部分是下降的10.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.12.方程的解是_____.13.如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作▱ABCD,对角线AC、BD交于E,则OE的最大值为_____.14.已知是方程的一个根,则代数式的值为__________.15.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.16.己知圆锥的母线长为,底面半径为,则它的侧面积为__________(结果保留).17.如图,△ABC中,DE∥BC,,△ADE的面积为8,则△ABC的面积为______18.一元二次方程的两个实数根为,则=_____.三、解答题(共66分)19.(10分)如图,是两棵树分别在同一时刻、同一路灯下的影子.(1)请画出路灯灯泡的位置(用字母表示)(2)在图中画出路灯灯杆(用线段表示);(3)若左边树的高度是4米,影长是3米,树根离灯杆底的距离是1米,求灯杆的高度.20.(6分)已知二次函数(k是常数)(1)求此函数的顶点坐标.(2)当时,随的增大而减小,求的取值范围.(3)当时,该函数有最大值,求的值.21.(6分)2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.22.(8分)如图,抛物线与轴交于A、B两点,与轴交于点C,抛物线的对称轴交轴于点D,已知点A的坐标为(-1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.23.(8分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?24.(8分)国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.请根据上述信息解答下列问题:(1)本次调查数据的众数落在组内,中位数落在组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.25.(10分)如图,在中,,,点在边上,且线段绕着点按逆时针方向旋转能与重合,点是与的交点.(1)求证:;(2)若,求的度数.26.(10分)如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若AE=5,AC=4,求BE的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意得到y=ax2+bx+4=,代入顶点公式即可求得.【详解】解:∵b2=4a,∴,∴∵,∴y最小值=,故选:D.【点睛】本题考查了二次函数最值问题,解决本题的关键是熟练掌握二次函数的性质,准确表达出二次函数的顶点坐标.2、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,3、C【解析】试题解析:C.两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.4、A【分析】根据轴对称图形和的概念和各图形特点解答即可.【详解】解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误;
故选:A.【点睛】本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合.5、C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B、只有当两直线平行,同位角必相等,此项不是真命题C、根据内角和定理可知,任意多边形的外角和都为,此项是真命题D、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题故选:C.【点睛】本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键.6、D【分析】事先能肯定它一定不会发生的事件称为不可能事件,据此进行判断即可.【详解】解:A.掷一次这枚骰子,向上一面的点数小于5,属于随机事件,不合题意;B.掷一次这枚骰子,向上一面的点数等于5,属于随机事件,不合题意;C.掷一次这枚骰子,向上一面的点数等于6,属于随机事件,不合题意;D.掷一次这枚骰子,向上一面的点数大于6,属于不可能事件,符合题意;故选:D.【点睛】本题考查的知识点是不可能事件的定义,比较基础,易于掌握.7、C【解析】根据直角、对顶角的概念、同位角的定义、余角的概念判断.【详解】解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、C【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:
图中的两个梯形成中心对称,点P的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.9、C【解析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确,故选C.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0),对称轴直线x=-,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.10、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.二、填空题(每小题3分,共24分)11、1【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC绕点A逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案为:1.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.12、x1=2,x2=﹣1【解析】解:方程两边平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.经检验,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.13、2+2【分析】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.证明EJ是定值,可得点E的运动轨迹是以J为圆心,EJ为半径的圆,由此即可解决问题.【详解】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.∵∠BAC=∠OAF=120°,∴∠BAO=∠CAF,∵ABAC,AO=AF,∴△OAB≌△FAC(SAS),∴CF=OB=,∵四边形BCDA是平行四边形,∴AE=EC,∵AJ=JF,∴EJ=CF=,∴点E的运动轨迹是以J为圆心,EJ为半径的圆,易知OJ=当点E在OJ的延长线上时,OE的值最大,最大值为OJ+JE=,故答案为2+2.【点睛】本题考查的是圆的综合,难度较大,解题关键是找出EJ是最大值.14、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.15、1【分析】从俯视图中可以看出最底层硬币的个数及形状,从主视图可以看出每一层硬币的层数和个数,从左视图可看出每一行硬币的层数和个数,从而算出总的个数.【详解】解:三堆硬币的个数相加得:3+4+2=1.
∴桌上共有1枚硬币.
故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16、【分析】求出圆锥的底面圆周长,利用公式即可求出圆锥的侧面积.【详解】解:圆锥的底面圆周长为,则圆锥的侧面积为.故答案为.【点睛】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.17、18.【解析】∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵,∴,∴.18、1【分析】直接根据一元二次方程根与系数的关系进行求解即可.【详解】的两个实数根为,,.故答案为1.【点睛】本题主要考查一元二次方程根与系数的关系,熟记根与系数的关系是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)灯杆的高度是米【分析】(1)直接利用中心投影的性质得出O点位置;(2)利用O点位置得出OC的位置;(3)直接利用相似三角形的性质得出灯杆的高度.【详解】解:(1)如图所示:O即为所求;(2)如图所示:CO即为所求;(3)由题意可得:△EAB∽△EOC,则,∵EB=3m,BC=1m,AB=4m,∴,解得:CO=,答:灯杆的高度是
米.【点睛】此题主要考查了相似三角形的应用,正确得出O点位置是解题关键.20、(1);(2);(3)或【分析】(1)先求出顶点横坐标,然后代入解析式求出顶点纵坐标即可;(2)根据二次函数的增减性列式解答即可;(3)分三种情况求解:①当k>1时,当k<0时,当时.【详解】解:(1)对称轴为:,代入函数得:,∴顶点坐标为:;(2)∵对称轴为:x=k,二次函数二次项系数小于零,开口向下;∴当时,y随x增大而减小;∵当时,y随x增大而减小;∴(3)①当k>1时,在中,y随x增大而增大;∴当x=1时,y取最大值,最大值为:;∴k=3;②当k<0时,在中,y随x增大而减小;∴当x=0时,y取最大值,最大值为:;∴;∴;③当时,在中,y随x先增大再减小;∴当x=k时,y取最大值,最大值为:;∴;解得:k=2或-1,均不满足范围,舍去;综上所述:k的值为-2或3.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.21、【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:小西小南ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表中可以看出,所有可能的结果有9种,并且这9种结果出现的可能性相等,所有可能的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率==.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.22、(1)y=﹣x2+x+2;(2)存在,点P坐标为(,4)或(,)或(,﹣).【分析】(1)根据点,利用待定系数法求解即可得;(2)根据等腰三角形的定义,分和,再分别利用两点之间的距离公式求出点P坐标即可.【详解】(1)将点代入抛物线的解析式得解得故二次函数的解析式为;(2)存在,求解过程如下:由二次函数的解析式可知,其对称轴为则点D的坐标为,可设点P坐标为由勾股定理得,由等腰三角形的定义,分以下2种情况:①当时,则解得或(不符题意,舍去),因此,点P坐标为②当时,解得,因此,点P坐标为或综上,存在满足条件的点P,点P坐标为或或.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的几何应用、等腰三角形的定义等知识点,较难的是(2),依据等腰三角形的定义,正确分两种情况讨论是解题关键.23、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:与的函数关系式为∵售价每件不能高于20元∴∴自变量的取值范围是;(2)解:设每件涨价元(为非负整数),则每周的销量为件,根据题意列方程,解得:,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 奥数满分试题解析及答案
- Unit 1 Section A 3a~3d grammar focus教学设计-2024-2025学年人教版七年级英语下册
- Unit 2 Exploring the topic-Grammar in use 教学设计 2024-2025学年仁爱科普版(2024)七年级英语上册
- Unit 3 My friends PB Let's talk(教学设计)-2024-2025学年人教PEP版英语四年级上册
- 多维提升珠宝鉴定师考试试题及答案
- 促销活动补充协议
- 农艺师考试大纲解读试题及答案
- 农业职业经理人青年发展战略试题及答案
- 客户信息保障协议
- 专心致志准备农业职业经理人考试试题及答案
- 职业院校“金课”建设方案
- 工业交换机产品培训
- 急性早幼粒细胞白血病M3的护理
- 陵园企业劳动合同样本
- 部编版小学语文四年级下册教师教学用书
- 2024年公务员考试广西(面试)试题及解答参考
- 电动车带牌过户免责协议书
- (完整版)大学英语六级单词表
- DB11T 1200-2015 超长大体积混凝土结构跳仓法技术规程
- 古诗词吟唱进入小学音乐课堂研究
- 燃料电池完整版本
评论
0/150
提交评论