版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年甘肃省临夏市九年级数学第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A.10m B.10m C.15m D.5m2.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.23.下列事件中,必然事件是()A.打开电视,正在播放宜春二套 B.抛一枚硬币,正面朝上C.明天会下雨 D.地球绕着太阳转4.下列事件中,是随机事件的是()A.任意一个五边形的外角和等于540°B.通常情况下,将油滴入水中,油会浮在水面上C.随意翻一本120页的书,翻到的页码是150D.经过有交通信号灯的路口,遇到绿灯5.已知关于的一元二次方程两实数根为、,则()A.3 B.﹣3 C.1 D.﹣16.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.127.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(
)A. B. C. D.38.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.9.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为()A.110° B.125° C.130° D.140°10.如果1是方程的一个根,则方程的另一个根是()A. B.2 C. D.1二、填空题(每小题3分,共24分)11.飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______才能停下来.12.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是_________.13.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.
14.关于的方程一个根是1,则它的另一个根为________.15.一只不透明的袋子中装有红球和白球共个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有__________.16.直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x+b<的解集是_______.17.在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点.若点,则的坐标为__________.18.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.20.(6分)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)求证△ADF∽△DEC;(2)若BE=2,AD=6,且DF=DE,求DF的长度.21.(6分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.22.(8分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.23.(8分)如图,⊙中,弦与相交于点,,连接.求证:⑴;⑵.24.(8分)定义:将函数C1的图象绕点P(m,0)旋转180°,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数。例如:当m=1时,函数y=(x-3)2+1关于点P(1,0)的相关函数为y=-(x+1)2-1.(1)当m=0时,①一次函数y=-x+7关于点P的相关函数为_______;②点A(5,-6)在二次函数y=ax2-2ax+a(a≠0)关于点P的相关函数的图象上,求a的值;(2)函数y=(x-2)2+6关于点P的相关函数是y=-(x-10)2-6,则m=_______(3)当m-1≤x≤m+2时,函数y=x2-6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.25.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.26.(10分)已知关于的一元二次方程有两个不相等的实数根,.(1)若为正整数,求的值;(2)若,满足,求的值.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:河堤横断面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故选A.考点:解直角三角形2、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.3、D【解析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】根据随机事件的定义,逐一判断选项,即可得到答案.【详解】∵任意一个五边形的外角和等于540°,是必然事件,∴A不符合题意,∵通常情况下,将油滴入水中,油会浮在水面上,是必然事件,∴B不符合题意,∵随意翻一本120页的书,翻到的页码是150,是不等能事件,∴C不符合题意,∵经过有交通信号灯的路口,遇到绿灯,是随机事件,∴D符合题意,故选D.【点睛】本题主要考查随机事件的定义,掌握必然事件,随机事件,不可能事件的定义,是解题的关键.5、A【解析】根据根与系数的关系求解即可.【详解】∵关于的一元二次方程两实数根为、,∴.故选:A.【点睛】本题考查了根与系数的关系,二次项系数为1,常用以下关系:、是方程的两根时,,.6、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.7、B【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.8、B【解析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.9、B【解析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.10、A【分析】利用方程解的定义找到相等关系,将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出方程的另一根.【详解】设方程的另一根为.又解得:故选A.【点睛】本题考查根与系数的关系,解题突破口是将1代入两根之积公式和两根之和公式列出方程组.二、填空题(每小题3分,共24分)11、200【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.12、2或【分析】设BF=,根据折叠的性质用x表示出B′F和FC,然后分两种情况进行讨论(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根据两三角形相似对应边成比例即可求解.【详解】设BF=,则由折叠的性质可知:B′F=,FC=,(1)当△B′FC∽△ABC时,有,即:,解得:;(2)当△B′FC∽△BAC时,有,即:,解得:;综上所述,可知:若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是2或故答案为2或.【点睛】本题考查了三角形相似的判定和性质,解本题时,由于题目中没有指明△B′FC和△ABC相似时顶点的对应关系,所以根据∠C是两三角形的公共角可知,需分:(1)△B′FC∽△ABC;(2)△B′FC∽△BAC;两种情况分别进行讨论,不要忽略了其中任何一种.13、3或1【解析】利用切线的性质得到点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),然后分别计算点(-1,0)和(1,0)到(-4,0)的距离即可.【详解】若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),而-1-(-4)=3,1-(-4)=1,所以点P的运动距离为3或1.故答案为3或1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.14、1【分析】利用一元二次方程根与系数的关系,即可得出答案.【详解】由一元二次方程根与系数的关系可知,∵关于的方程一个根是1,∴它的另一个根为1,故答案为:1.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.15、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】设袋中有x个红球.
由题意可得:,解得:,
故答案为:1.【点睛】本题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.16、0<x<1或x>1.【分析】根据函数图象,可得一次函数图象在上方的部分,可得答案【详解】解:∵直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和1,
∴不等式k1x+b<的解集是0<x<1或x>1.故答案为:0<x<1或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题,一次函数图象在下方的部分是不等式的解集.17、【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,根据相似比即可求得位似图形对应点的坐标.【详解】由题意,得和是以坐标原点为位似中心的位似图形,相似比为2则的坐标为,故答案为:.【点睛】此题考查了位似图形与坐标的关系,熟练掌握,即可解题.18、1【解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.三、解答题(共66分)19、(1)证明见解析;(2)MD长为1.【分析】(1)利用矩形性质,证明BMDN是平行四边形,再结合MN⊥BD,证明BMDN是菱形.(2)利用BMDN是菱形,得BM=DM,设,则,在中使用勾股定理计算即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵BD的垂直平分线MN∴BO=DO,∵在△DMO和△BNO中∠MDO=∠NBO,BO=DO,∠MOD=∠NOB∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD∴BMDN是菱形(2)∵四边形BMDN是菱形,∴MB=MD,设MD=x,则MB=DM=x,AM=(8-x)在Rt△AMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=1答:MD长为1.【点睛】本题考查了矩形的性质,菱形的性质,及勾股定理,熟练使用以上知识是解题的关键.20、(1)见解析;(2)DF=4【分析】(1)根据平行四边形的性质得到∠ADF=∠DEC,∠C+∠B=180°,根据∠AFE=∠B得到∠AFD=∠C,根据相似三角形的判定定理即可证明;(2)根据相似三角形的性质列出比例式,代入计算即可.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵△ADF∽△DEC∴∵四边形ABCD是平行四边形,AD=6,BE=2∴EC=BC-BE=AD-BE=4,又∵DF=DE∴DE=DF∴解得DF=4.【点睛】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解决本题的关键.21、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;
(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,
∴∠OAC=∠OAB=45°,
∴∠EAB=∠EAF-∠BAF=45°,
∴∠EAB=∠BAF=45°,
在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),
∴BE=BF;
(2)①∵∠BAC=90°,∠EAF=90°,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),
∴∠EBA=∠FCA,
又∵∠KGB=∠AGC,
∴△AGC∽△KGB;
②当∠EBF=90°时,∵EF=BF,
∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.22、(1)①y=x2﹣8x+3;②线段MQ的最大值为1.(2)m+n的值为定值.m+n=2.【分析】(1)①根据点B的坐标和二次函数图象的对称轴即可求出二次函数解析式;②设M(m,m2﹣8m+3),利用待定系数法求出直线BC的解析式,从而求出Q(m,﹣2m+3),即可求出MQ的长与m的函数关系式,然后利用二次函数求最值即可;(2)将B(2,0)代入二次函数解析式中,求出二次函数解析式即可求出点C的坐标,然后利用待定系数法求出直线BC的解析式,根据一次函数的性质设出直线MN的解析式,然后联立方程结合一元二次方程根与系数的关系即可得出结论.【详解】(1)①由题意,解得,∴二次函数的解析式为y=x2﹣8x+3.②如图1中,设M(m,m2﹣8m+3),∵B(2,0),C(0,3),∴直线BC的解析式为y=﹣2x+3,∵MQ⊥x轴,∴Q(m,﹣2m+3),∴QM=﹣2m+3﹣(m2﹣8m+3)=﹣m2+2m=﹣(m﹣3)2+1,∵﹣1<0,∴m=3时,QM有最大值,最大值为1.(2)结论:m+n的值为定值.理由:如图2中,将B(2,0)代入二次函数解析式中,得解得:∴二次函数解析式为∴C(0,﹣32﹣2b),设直线BC的解析式为y=kx﹣32﹣2b,把(2,0)代入得到:k=2+b,∴直线BC的解析式为y=(2+b)x﹣32﹣2b,∵MN∥CB,∴可以假设直线MN的解析式为y=(2+b)x+b′,由,消去y得到:x2﹣2x﹣32﹣2b﹣b′=0,∴x1+x2=2,∵点M、N的横坐标为m、n,∴m+n=2.∴m+n为定值,m+n=2.【点睛】此题考查的是二次函数与一次函数的综合题型,掌握利用待定系数法求二次函数解析式、一次函数解析式、利用二次函数求最值、一元二次方程根与系数的关系是解决此题的关键.23、(1)见解析;(2)见解析.【分析】(1)由AB=CD知,即,据此可得答案;(2)由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】证明(1)∵AB=CD,∴,即,∴;(2)∵,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.24、(1)①;②;(2)6;(3)的值为或.【分析】(1)①由相关函数的定义,将旋转变换可得相关函数为;②先求出二次函数的相关函数,然后求出相关函数,再把点A代入,即可得到答案;(2)两函数顶点关于点P中心对称,可用中点坐标公式获得点P坐标,从而获得m的值;(3)先确定相关函数,然后根据m的取值范围,对m进行分类讨论,以对称轴在给定区间的左侧,中部,右侧,三种情况分类讨论,获得对应的m的值.【详解】解:(1)①根据相关函数的定义,关于点P(0,0)旋转变换可得相关函数为;故答案为:;②∵,关于点的相关函数为.∵点在二次函数的图象上,.解得:.(2)∵的顶点为(2,6);的顶点坐标为(10,-6);∵两个二次函数的顶点关于点P(m,0)成中心对称,∴故答案为:6;(3)∵,关于点的相关函数为.①当,即时,当时,有最大值为2.(不符合题意,舍去),.②当,即时,当时,有最大值为2..,(都不符合题意,舍去).③当,即,当,有最大值为2..,(不符合题意,舍去).综上,的值为或.【点睛】本题考查了二次函数的性质问题以及中心对称,以及相关函数的定义,旋转的性质,中心对称图形的性质,(3)是本题的难点,需要分三类进行讨论,研究函数的变化轨迹,是很好的一道压轴问题.25、(1)证明见解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得.(1)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CD﹣CB=CF.②证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,则OC即可求得.【详解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四边形ADE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某市废旧家电和电子废弃物回收处理项目可行性实施计划书
- 求职委托合同
- 山西省临汾市商品房买卖合同有范本么
- 迎接2024年的祝福语(4篇)
- 餐饮业增值税管理要点
- 机场工程合同价款构成
- 《仰望星空》11-天文学第一问题
- 转专业申请书的范文(内容格式8篇)
- 麻醉科疑难危重及死亡病例讨论制度
- 企业活动租车合同范本
- G -B- 43630-2023 塔式和机架式服务器能效限定值及能效等级(正式版)
- 24春国开电大《工具书与文献检索》平时作业1-4答案
- 文艺复兴经典名著选读 知到智慧树网课答案
- 2024年北京出版集团有限责任公司招聘笔试冲刺题(带答案解析)
- 2024年成都电子信息产业功能区建设发展有限责任公司招聘笔试冲刺题(带答案解析)
- 2022-2023学年福建省厦门一中九年级(上)期中物理试卷
- 足球球性球感练习教案
- 锂离子电池制造中的安全问题与防范措施
- 中小学数学教学有效衔接教育探索
- MOOC 现代邮政英语(English for Modern Postal Service)-南京邮电大学 中国大学慕课答案
- 胃结石的护理查房
评论
0/150
提交评论