2023年甘肃省兰州天庆中学九年级数学第一学期期末监测试题含解析_第1页
2023年甘肃省兰州天庆中学九年级数学第一学期期末监测试题含解析_第2页
2023年甘肃省兰州天庆中学九年级数学第一学期期末监测试题含解析_第3页
2023年甘肃省兰州天庆中学九年级数学第一学期期末监测试题含解析_第4页
2023年甘肃省兰州天庆中学九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年甘肃省兰州天庆中学九年级数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20° B.40° C.60° D.80°2.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小3.下列方程中,属于一元二次方程的是()A. B. C. D.4.下列四个三角形,与左图中的三角形相似的是().A. B. C. D.5.如果点与点关于原点对称,则()A.8 B.2 C. D.6.计算的结果是()A. B. C. D.7.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±18.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小 B.不可能摸出白球C.一定能摸出红球 D.摸出红球的可能性最大9.已知关于x的一元二次方程有两个相等的实数根,则a的值是()A.4 B.﹣4 C.1 D.﹣110.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.6二、填空题(每小题3分,共24分)11.二次函数y=+2的顶点坐标为.12.经过点(1,﹣4)的反比例函数的解析式是_____.13.如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED=_______°.14.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的根,则该三角形的周长为_____.15.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.16.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)17.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.18.若点A(a,b)在双曲线y=上,则代数式ab﹣4的值为_____.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.20.(6分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?21.(6分)小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利多少元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种多肉植物,单株获利最大?(提示:单株获利=单株售价﹣单株成本)22.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.23.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.24.(8分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?25.(10分)解不等式组:26.(10分)如图所示,是的直径,为弦,交于点.若,,.(1)求的度数;(2)求的长度.

参考答案一、选择题(每小题3分,共30分)1、B【解析】因为旋转后得到△AMN与△ABC相似,则∠AMN=∠C=40°,因为旋转前∠AMN=80°,所以旋转角度为40°,故选B.2、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;

B选项:反比例函数的图象关于原点中心对称,故本选项错误;

C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;

D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.

故选B.3、D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解.【详解】解:A.不是一元二次方程;B.不是一元二次方程;C.整理后可知不是一元二次方程;D.整理后是一元二次方程;故选:D.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).4、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.

A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;

B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.

故选:B.【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.5、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,

∴m=3,n=-5,

∴m+n=-2,

故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.6、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果.【详解】解:==,故选C.【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键.7、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.8、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,

∴摸出黑球的概率是,

摸出白球的概率是,

摸出红球的概率是,

∵<<,

∴从中任意摸出1个球,摸出红球的可能性最大;

故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.9、D【详解】解:根据一元二次方程根的判别式得,△,解得a=﹣1.故选D.10、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.二、填空题(每小题3分,共24分)11、(1,2).【解析】试题分析:由二次函数的解析式可求得答案.∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2).故答案为(1,2).考点:二次函数的性质.12、﹣【分析】直接利用反比例函数的性质得出解析式.【详解】∵反比例函数经过点(1,﹣4),∴xy=﹣4,∴反比例函数的解析式是:y=﹣.故答案为:y=﹣.【点睛】本题考查的是反比例函数的性质,是近几年中考的热点问题,要熟练掌握.13、45°【详解】∵正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.14、13【分析】利用因式分解法解方程,得到,,再利用三角形的三边关系进行判断,然后计算三角形的周长即可.【详解】解:∵,∴,∴,,∵,∴不符合题意,舍去;∴三角形的周长为:;故答案为:13.【点睛】本题考查了解一元二次方程,以及三角形的三边关系的应用,解题的关键是正确求出第三边的长度,以及掌握三角形的三边关系.15、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.17、1.【分析】求出方程的解,再看看是否符合三角形三边关系定理即可解答.【详解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,则x﹣2=0或x﹣7=0,解得x=2或x=7,当x=2时,三角形的周长为2+3+4=1;当x=7时,3+4=7,不能构成三角形;故答案为:1.【点睛】本题考查解一元二次方程和三角形三边关系定理的应用,解题的关键是确定三角形的第三边.18、﹣1【分析】根据反比例函数图象上点的坐标特征得到k=xy,由此求得ab的值,然后将其代入所求的代数式进行求值即可.【详解】解:∵点A(a,b)在双曲线y=上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(共66分)19、(1)详见解析;(2)1.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.20、(1)(2)当为10时,超市每天销售这种玩具可获利润2250元(3)当为20时最大,最大值是2400元【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到,根据二次函数的性质得到当时,随的增大而增大,于是得到结论.【详解】(1)根据题意得,;(2)根据题意得,,解得:,,∵每件利润不能超过60元,∴,答:当为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,,∵,∴当时,随的增大而增大,∴当时,,答:当为20时最大,最大值是2400元.【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.21、(1)每株获利为1元;(2)5月销售这种多肉植物,单株获利最大.【解析】(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),即可求解;(2)点(3,5)、(6,3)为一次函数上的点,求得直线的表达式为:y1=﹣x+7;同理,抛物线的表达式为:y2=(x﹣6)2+1,故:y1﹣y2=﹣x+7-(x﹣6)2﹣1=﹣(x﹣5)2+,即可求解.【详解】(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),(2)设直线的表达式为:y1=kx+b(k≠0),把点(3,5)、(6,3)代入上式得:,解得:,∴直线的表达式为:y1=﹣x+7;设:抛物线的表达式为:y2=a(x﹣m)2+n,∵顶点为(6,1),则函数表达式为:y2=a(x﹣6)2+1,把点(3,4)代入上式得:4=a(3﹣6)2+1,解得:a=,则抛物线的表达式为:y2=(x﹣6)2+1,∴y1﹣y2=﹣x+7-(x﹣6)2﹣1=﹣(x﹣5)2+,∵a=﹣<0,∴x=5时,函数取得最大值,故:5月销售这种多肉植物,单株获利最大.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.22、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.23、(1)证明见解析;(2)证明见解析.【分析】(1)根据两组对角对应相等的两个三角形相似证明即可;

(2)根据直角三角形的性质得到CE=BE=AE,根据等腰三角形的性质得到∠EAC=∠ECA,推出AD∥CE即可解决问题;【详解】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论