2023-2024学年山东省临沂临沭县联考九年级数学第一学期期末统考模拟试题含解析_第1页
2023-2024学年山东省临沂临沭县联考九年级数学第一学期期末统考模拟试题含解析_第2页
2023-2024学年山东省临沂临沭县联考九年级数学第一学期期末统考模拟试题含解析_第3页
2023-2024学年山东省临沂临沭县联考九年级数学第一学期期末统考模拟试题含解析_第4页
2023-2024学年山东省临沂临沭县联考九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省临沂临沭县联考九年级数学第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c< D.c<12.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是()A.1.5cm B.3cm C.6cm D.12cm3.如图,是的外接圆,,点是外一点,,,则线段的最大值为()A.9 B.4.5 C. D.4.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个()A.45 B.48 C.50 D.555.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁6.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是()A. B.C. D.7.下列一元二次方程有两个相等实数根的是()A.x2=0 B.x2=4 C.x2﹣2x﹣1=0 D.x2+1=08.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值随的增大而减小C.点为图像上的任意一点,过点作轴于点.的面积是.D.若点和点在这个函数图像上,则9.在平面直角坐标系内,将抛物线先向右平移个单位,再向下平移个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是()A. B. C. D.10.如图,PA、PB都是⊙O的切线,切点分别为A、B.四边形ACBD内接于⊙O,连接OP则下列结论中错误的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>212.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在四边形中,,,则的度数为______.14.分解因式____________.15.在△ABC中,∠C=90°,AC=,∠CAB的平分线交BC于D,且,那么tan∠BAC=_________.16.如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点,.连接,,且.过点作,交反比例函数(其中)的图象于点,连接交于点,则的值为_____________.17.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.18.如图:M为反比例函数图象上一点,轴于A,时,______.三、解答题(共78分)19.(8分)已知,求的值.20.(8分)如图,AB是⊙O的直径,弦EF⊥AB于点C,点D是AB延长线上一点,∠A=30°,∠D=30°.(1)求证:FD是⊙O的切线;(2)取BE的中点M,连接MF,若⊙O的半径为2,求MF的长.21.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?22.(10分)有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.23.(10分)如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).(1)过点作于点,如果BE=2,,求MH的长;(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.24.(10分)2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于?(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高,再大幅降价元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了,这样一天的利润达到22400元,求的值.(利润=售价-成本)25.(12分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是__________,位置关系是__________;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.26.某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?

参考答案一、选择题(每题4分,共48分)1、B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则,解得c<﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.2、C【分析】根据150°的圆心角所对的弧长是5πcm,代入弧长公式即可得到此弧所在圆的半径.【详解】设此弧所在圆的半径为rcm,∵150°的圆心角所对的弧长是5πcm,∴,解得,r=6,故选:C.【点睛】本题考查弧长的计算,熟知弧长的计算公式是解题的关键.3、C【分析】连接OB、OC,如图,则△OBC是顶角为120°的等腰三角形,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,根据等腰三角形的性质和锐角三角函数可得,于是求OP的最大值转化为求PM的最大值,因为,所以当P、B、M三点共线时,PM最大,据此求解即可.【详解】解:连接OB、OC,如图,则OB=OC,∠BOC=2∠A=120°,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,过点O作ON⊥PM于点N,则∠MON=60°,MN=PM,在直角△MON中,,∴,∴当PM最大时,OP最大,又因为,所以当P、B、M三点共线时,PM最大,此时PM=3+6=9,所以OP的最大值是:.故选:C.【点睛】本题考查了圆周角定理、等腰三角形的性质、旋转的性质、解直角三角形和两点之间线段最短等知识,具有一定的难度,将△OPC绕点O顺时针旋转120°到△OMB的位置,将求OP的最大值转化为求PM的最大值是解题的关键.4、A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A.5、B【分析】根据平均数与方差的意义解答即可.【详解】解:,乙与丁二选一,又,选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.6、D【解析】根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.【详解】∵点,点,点为弦的中点,∴,,∴,又满足等式:,∴,故选D.【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.7、A【分析】根据一元二次方程根的判别式以及一元二次方程的解法,逐一判断选项,即可.【详解】A.x2=0,解得:x1=x2=0,故本选项符合题意;B.x2=4,解得:x1=2,x2=-2,故本选项不符合题意;C.x2﹣2x﹣1=0,,有两个不相等的根,故不符合题意;D.x2+1=0,方程无解,故不符合题意.故选A.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式的意义,是解题的关键.8、B【分析】对反比例函数化简得,所以k=>0,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A、∵k=>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵k=,根据反比例函数中k的几何意义可得的面积为=,故本选项正确;D、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本选项正确.故选:B.【点睛】题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.9、B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线的顶点坐标为(0,−1),∵向右平移个单位,再向下平移个单位,∴平移后的抛物线的顶点坐标为(2,−4).故选B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.10、D【分析】连接,,根据PA、PB都是⊙O的切线,切点分别为A、B,得到,,所以A,C正确;根据得到,即,所以B正确;据此可得答案.【详解】解:如图示,连接,,、是的切线,,,所以A,C正确;又∵,,∴在四边形APBO中,,即,所以B正确;∵D为任意一点,无法证明,故D不正确;故选:D.【点睛】本题考查了圆心角和圆周角,圆的切线的性质和切线长定理,熟悉相关性质是解题的关键.11、D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.12、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.二、填空题(每题4分,共24分)13、18°【分析】根据题意可知A、B、C、D四点共圆,由余角性质求出∠DBC的度数,再由同弧所对的圆周角相等,即为所求.【详解】解:∵在四边形中,,∴A、B、C、D四点在同一个圆上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案为:18°【点睛】本题考查的是四点共圆、互为余角的概念和同圆中同弧所对的圆周角相等.14、【分析】先提取公因式,再利用平方差公式即可求解.【详解】故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.15、【分析】根据勾股定理求出DC,推出∠DAC=30°,求出∠BAC的度数,即可得出tan∠BAC的值.【详解】在△DAC中,∠C=90°,由勾股定理得:DC,∴DCAD,∴∠DAC=30°,∴∠BAC=2×30°=60°,∴tan∠BAC=tan60°.故答案为:.【点睛】本题考查了含30度角的直角三角形,锐角三角函数的定义,能求出∠DAC的度数是解答本题的关键.16、【分析】过点作轴,垂足为点,交于点,根据三线合一可得,,,利用平行线即可求出MH从而求出AM,再根据平行线即可证出,列出比例式即可求出的值.【详解】解:过点作轴,垂足为点,交于点,如图所示.,,,,,,,,.故答案为【点睛】此题考查的是反比例函数与图形题,掌握利用反比例函数求点的坐标和相似三角形的判定及性质是解决此题的关键.17、3【分析】作出D关于AB的对称点D',则PC+PD的最小值就是CD'的长度.在△COD'中根据边角关系即可求解.【详解】作出D关于AB的对称点D',连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为的中点,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案为:3.【点睛】本题考查了圆周角定理以及路程的和最小的问题,正确作出辅助线是解答本题的关键.18、﹣1.【分析】根据反比例函数系数的几何意义,由S△AOM=4,可可求出|k|=1,再由函数图像过二、四象限可知k<0,,从而可求出k的值.【详解】∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.三、解答题(共78分)19、9【分析】根据,用表示、、,将它们代入原式,即可得到答案.【详解】解:设,则x=2k,y=3k,z=4k∴=.【点睛】本题考查了比例的性质,将三个未知数用一个未知数表示出来是解题的关键.20、(1)见解析;(2)MF=.【分析】(1)如图,连接OE,OF,由垂径定理可知,根据圆周角定理可求出∠DOF=60°,根据三角形内角和定理可得∠OFD=90°,即可得FD为⊙O的切线;(2)如图,连接OM,由中位线的性质可得OM//AE,根据平行线的性质可得∠MOB=∠A=30°,根据垂径定理可得OM⊥BE,根据含30°角的直角三角形的性质可求出BE的长,利用勾股定理可求出OM的长,根据三角形内角和可得∠DOF=60°,即可求出∠MOF=90°,利用勾股定理求出MF的长即可.【详解】(1)如图,连接OE,OF,∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°,∴OF⊥FD.∴FD为⊙O的切线.(2)如图,连接OM,MF,∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴MB=OB=1,∴OM==,∵∠OFD=90°,∠D=30°,∴∠DOF=60°,∴∠MOF=∠DOF+∠MOB=90°,∴MF===.【点睛】本题考查切线的判定与性质、垂径定理、三角形中位线的性质及含30°角的直角三角形的性质,熟练掌握切线的性质是解题关键.21、(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.【解析】(1)根据“当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获的利润×销售量列出函数关系式整理,然后根据二次函数的最值问题解答即可.试题分析:试题解析:(1)由题意得,y=700-20(x-45)=-20x+1600;(2),∵x≥45,抛物线的开口向下,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.考点:二次函数的应用.22、概率为.【分析】选择用列表法求解,先列出随机选择一个家长和一个孩子的所有可能的结果,再看两人恰好是同一个家庭的结果,利用概率公式求解即可.【详解】依题意列表得:孩子家长abcdA(A,a)(A,b)(A,c)(A,d)B(B,a)(B,b)(B,c)(B,d)C(C,a)(C,b)(C,c)(C,d)D(D,a)(D,b)(D,c)(D,d)由上表可得,共有16种结果,每种结果出现的可能性相同,选中的两个人刚好是一个家庭的有4组:(A,a)、(B,b)、(C,c)、(D,d)故所求的概率为.【点睛】本题考查了用列举法求概率,根据题意列出所有可能的结果是解题关键.23、(1)MH=;(2)1个.【分析】(1)先根据题意补全图形,然后利用锐角三角函数求出圆的半径即OM的长度,再利用勾股定理求出BM的长度,最后利用可求出MH的长度.(2)过点O作⊥于点,通过等量代换可知∠∠,从而利用角平分线的性质可知,得出为⊙的切线,从而可确定公共点的个数.【详解】解:(1)∵到点的距离等于线段的长的所有点组成图形,∴图形是以为圆心,的长为半径的圆.根据题意补全图形:∵于点M,∴∠.在△中,,∴.∵∴,解得:.∴.在△中,,∴.∵∴∴.(2)解:1个.证明:过点O作⊥于点,∵∠∠,且∠∠,∴∠∠.∴.∴为⊙的切线.∴射线与图形的公共点个数为1个.【点睛】本题主要考查解直角三角形和直线与圆的位置关系,掌握圆的相关性质,勾股定理和角平分线的性质是解题的关键.24、(1)最多降价200元,才能使得利润不低于;(2)的值为1【分析】(1)设降价x元,才能使利润率不低于30%,根据售价﹣成本=利润,即可得出关于x的一元一次不等式,解之即可得出m的取值范围,取其最大值即可得出结论;(2)根据总利润=单套利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.【详解】(1)设降价元,根据题意得:解得:答:最多降价200元,才能使得利润不低于.(2)根据题意得:整理得:解得:,(舍去)∴.答:的值为1.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论