2023-2024学年山东省临沂市野店中学九年级数学第一学期期末统考模拟试题含解析_第1页
2023-2024学年山东省临沂市野店中学九年级数学第一学期期末统考模拟试题含解析_第2页
2023-2024学年山东省临沂市野店中学九年级数学第一学期期末统考模拟试题含解析_第3页
2023-2024学年山东省临沂市野店中学九年级数学第一学期期末统考模拟试题含解析_第4页
2023-2024学年山东省临沂市野店中学九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省临沂市野店中学九年级数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,AD=CD,则∠DAC的度数是()A.30° B.35° C.45° D.70°2.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为()A.7×103 B.7×108 C.7×107 D.0.7×1083.如图,的半径为3,是的弦,直径,,则的长为()A. B. C. D.4.如图,CD⊥x轴,垂足为D,CO,CD分别交双曲线y=于点A,B,若OA=AC,△OCB的面积为6,则k的值为()A.2 B.4 C.6 D.85.如图,在△ABO中,∠B=90º,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是().A.⊙P的半径为B.经过A,O,B三点的抛物线的函数表达式是C.点(3,2)在经过A,O,B三点的抛物线上D.经过A,O,C三点的抛物线的函数表达式是6.下列命题中,是真命题的是A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形7.二次函数y=+2的顶点是()A.(1,2) B.(1,−2) C.(−1,2) D.(−1,−2)8.已知反比例函数y=的图象上有三点A(4,y1),B(1.y1),c(,y3)则y1、y1、y3的大小关系为()A.y1>y1>y3 B.y1>y1>y3 C.y3>y1>y1 D.y3>y1>y19.下列事件属于必然事件的是()A.篮球队员在罚球线上投篮一次,未投中 B.掷一次骰子,向上一面的点数是6C.任意画一个五边形,其内角和是540° D.经过有交通信号灯的路口,遇到红灯10.若关于的一元二次方程有实数根,则的值不可能是()A. B. C.0 D.201811.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣112.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?()A.1 B.9 C.16 D.21二、填空题(每题4分,共24分)13.如图,为矩形对角线,的交点,AB=6,M,N是直线BC上的动点,且,则的最小值是_.14.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.16.请将二次函数改写的形式为_________________.17.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.18.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的黄、白两种颜色的乒乓球若干只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601现从这个口袋中摸出一球,恰好是黄球的概率为_____.三、解答题(共78分)19.(8分)如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.20.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?21.(8分)已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.(1)求证:△GAE∽△GBF;(2)求证:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的长.22.(10分)如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若=,请求出的值.23.(10分)如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.(1)若AE=2.5,CD=3,BD=2,求AB的长;(2)若∠CBE=30°,求证:CG=AD+EF.24.(10分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.25.(12分)央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作、、、.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为.(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表),求所选取的这两名学生恰好是一男一女的概率.26.学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(:特别好,:好,:一般,:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中类学生所对应的圆心角是_________度;(3)为了共同进步,陈老师从被调查的类和类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】连接BD,如图,利用圆周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,则∠ADC=110°,然后根据等腰三角形的性质和三角形内角和计算∠DAC的度数.【详解】解:连接BD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.2、C【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】将数据7000万用科学记数法表示为.

故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.3、C【分析】连接OC,利用垂径定理以及圆心角与圆周角的关系求出;再利用弧长公式即可求出的长.【详解】解:连接OC(同弧所对的圆心角是圆周角的2倍)∵直径∴=(垂径定理)∴故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.4、B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为k,即可得到S△ODC=•2m•2n=2mn=2k,即可得到6+k=2k,解得k=1.【详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=上,∴k=mn,∴S△ODC=×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为k,∴6+k=2k,解得k=1,故选:B.【点睛】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.5、D【分析】A、连接PC,根据已知条件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得点B坐标,由A、B、O三点坐标,可求出抛物线的函数表达式;C、由射影定理及勾股定理可计算出点C坐标,将点C代入抛物线表达式即可判断;D、由A,O,C三点坐标可求得经过A,O,C三点的抛物线的函数表达式.【详解】解:如图所示,连接PC,∵圆P与AB相切于点C,所以PC⊥AB,又∵∠B=90º,所以△ACP∽△ABO,设OP=x,则OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半径为,故A选项错误;过B作BD⊥OA交OA于点D,∵∠B=90º,BD⊥OA,由勾股定理可得:,由面积相等可得:∴,∴由射影定理可得,∴∴,设经过A,O,B三点的抛物线的函数表达式为;将A(5,0),O(0,0),代入上式可得:解得,,c=0,经过A,O,B三点的抛物线的函数表达式为,故B选项错误;过点C作CE⊥OA交OA于点E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴点C坐标为,故选项C错误;设经过A,O,C三点的抛物线的函数表达式是,将A(5,0),O(0,0),代入得,解得:,∴经过A,O,C三点的抛物线的函数表达式是,故选项D正确.【点睛】本题考查相似三角形、二次函数、圆等几何知识,综合性较强,解题的关键是要能灵活运用相似三角形的性质计算.6、A【解析】根据特殊四边形的判定方法进行判断.对角线相等的平行四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直的平行四边形是菱形;对角线互相垂直且相等的平行四边形是正方形7、C【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=+2的顶点坐标.【详解】解:∵二次函数y=+2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.8、C【分析】把A、B、C的坐标分别代入y=,分别求出y1、y1、y2的值,从而得到它们的大小关系.【详解】解:把A(4,y1),B(1.y1),c(,y2)分别代入y=,得y1=,y1==,y2==所以y1<y1<y2.故选:C.【点睛】本题考查的知识点是根据反比例函数解析式自变量的值求函数值,比较基础.9、C【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解:A、篮球队员在罚球线上投篮一次,未投中,是随机事件.B、掷一次骰子,向上一面的点数是6,是随机事件.C、任意画一个五边形,其内角和是540°,是必然事件.D、经过有交通信号灯的路口,遇到红灯,是随机事件.故选:C.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△==4+4m≥0,∴m≥-1,的值不可能是-2.故选:A.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.11、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【点睛】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.12、A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.二、填空题(每题4分,共24分)13、2【分析】根据题意找到M与N的位置,再根据勾股定理求出OM,ON的长即可解题.【详解】解:过点O作OE⊥BC于E,由题可知当E为MN的中点时,此时OM+ON有最小值,∵AB=6,∴PE=3,(中位线性质)∵MN=2,即ME=NE=1,∴OM=ON=,(勾股定理)∴OM+ON的最小值=2【点睛】本题考查了图形的运动,中位线和勾股定理,找到M与N的位置是解题关键.14、.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.15、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.16、【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:;故答案为:.【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).17、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.18、0.1【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出黄球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到黄球的频率稳定在0.1左右,则P黄球=0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率:通过大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性可以根据频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率三、解答题(共78分)19、(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:见解析.【解析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.【详解】(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴,∵FG∥AB,∴;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵,∴△BCG∽△ACF,∴;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.20、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.21、(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE∥BC可直接判定结论;(2)先证△ADE≌△CDF,即可推出结论;(3)由△GAE∽△GBF,可用相似三角形的性质求出结果.【详解】(1)∵AE∥BC,∴△GAE∽△GBF;(2)∵AE∥BC,∴∠E=∠F,∠EAD=∠FCD,又∵点D是AC的中点,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF;(3)∵△GAE∽△GBF,∴,又∵AE=CF,∴3,即3,∴AE=1.【点睛】本题考查了相似三角形的判定与性质等,解答本题的关键是灵活运用相似三角形的性质.22、(1)27;(2)证明见解析;(3)=.【分析】(1)由四边形ABCD,AEFG是正方形,得到∠BAC=∠GAF=45°,于是得到∠BAF+∠FAC=∠FAC+∠GAC=45°,推出∠HAG=∠BAF=18°,由于∠DAG+∠GAH=∠DAC=45°,于是得到结论;(2)由四边形ABCD,AEFG是正方形,推出==,得=,由于∠DAG=∠CAF,得到△ADG∽△CAF,列比例式即可得到结果;(3)设BF=k,CF=2k,则AB=BC=3k,根据勾股定理得到AF===k,AC=AB=3k,由于∠AFH=∠ACF,∠FAH=∠CAF,于是得到△AFH∽△ACF,得到比例式即可得到结论.【详解】解:(1)∵四边形ABCD,AEFG是正方形,∴∠BAC=∠GAF=45°,∴∠BAF+∠FAC=∠FAC+∠GAC=45°,∴∠HAG=∠BAF=18°,∵∠DAG+∠GAH=∠DAC=45°,∴∠DAG=45°﹣18°=27°,故答案为:27.(2)∵四边形ABCD,AEFG是正方形,∴=,=,∴=,∵∠DAG+∠GAC=∠FAC+∠GAC=45°,∴∠DAG=∠CAF,∴△AFC∽△AGD;(3)∵=,设BF=k,∴CF=2k,则AB=BC=3k,∴AF===k,AC=AB=3k,∵四边形ABCD,AEFG是正方形,∴∠AFH=∠ACF,∠FAH=∠CAF,∴△AFH∽△ACF,∴,∴==.【点睛】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,找准相似三角形是解题的关键.23、(1);(2)见解析.【分析】(1)BE是△ABC的中线,则AC=5,由勾股定理求出AD的长,再由勾股定理求得AB的长;

(2)过点E作EM∥FG,作EN∥AD,先得出EN=AD,然后证明EN=BE,从而有AD=BE.再证明△ABE≌△EMC,得出BE=MC,再推导出四边形EFGM是平行四边形,得出EF=GM,继而可得出结论.【详解】(1)解:∵BE是△ABC的中线,

∴AE=EC=2.5,∴AC=5,

∵AD是△ABC的高,

∴AD⊥BC,,;(2)证明:如图,过点E作EM∥FG,作EN∥AD.∵BE是中线,即E为AC的中点,∴EN为△ACD的中位线,∴EN=AD.∵AD是高,∴EN⊥BC,∴∠ENB=90°.∵∠CBE=30°,∴EN=BE.∴AD=BE.∵FG∥AB,EM∥FG,∴EM∥AB,∴∠BAE=∠MEC.∵EB∥CG,∴∠AEB=∠ECM.在△ABE和△EMC中,∵,∴△ABE≌△EMC(ASA),∴BE=MC.∵EM∥FG,BE∥GC,∴四边形EFGM是平行四边形,∴EF=GM.∴GC=GM+MC=EF+BE=EF+AD.【点睛】本题考查了三角形中位线定理、平行线的性质、平行四边形的判定与性质、勾股定理、含30°角的直角三角形性质以及全等三角形的判定与性质等知识,通过作辅助线构建三角形中位线以及构造平行四边形是解题的关键.24、【解析】首先根据底面半径OB=3cm,高OC=4cm,求出圆锥的母线长,再利用圆锥的侧面积公式求出即可.【详解】解:根据题意,由勾股定理可知.,圆锥形漏斗的侧面积.【点睛】此题主要考查了圆锥的侧面积公式求法,正确的记忆圆锥侧面积公式是解决问题的关键.25、(1)50;144;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论