北京市石景山第九中学2024届高三一轮复习周测(一)数学试题试卷_第1页
北京市石景山第九中学2024届高三一轮复习周测(一)数学试题试卷_第2页
北京市石景山第九中学2024届高三一轮复习周测(一)数学试题试卷_第3页
北京市石景山第九中学2024届高三一轮复习周测(一)数学试题试卷_第4页
北京市石景山第九中学2024届高三一轮复习周测(一)数学试题试卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市石景山第九中学2024届高三一轮复习周测(一)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数是纯虚数,则()A.3 B.5 C. D.2.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面3.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.4.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A. B. C. D.5.设实数、满足约束条件,则的最小值为()A.2 B.24 C.16 D.146.设为抛物线的焦点,,,为抛物线上三点,若,则().A.9 B.6 C. D.7.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A. B. C.2 D.48.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.9.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.10.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()A. B. C. D.11.已知集合,集合,则().A. B.C. D.12.已知函数且,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.14.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.15.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.16.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.18.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.19.(12分)如图所示,在三棱锥中,,,,点为中点.(1)求证:平面平面;(2)若点为中点,求平面与平面所成锐二面角的余弦值.20.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.21.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(l)求直线的普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且.求直线的方程.22.(10分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先由已知,求出,进一步可得,再利用复数模的运算即可【题目详解】由z是纯虚数,得且,所以,.因此,.故选:C.【题目点拨】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.2、B【解题分析】

本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【题目详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.【题目点拨】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误.3、C【解题分析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.4、B【解题分析】

,将,代入化简即可.【题目详解】.故选:B.【题目点拨】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.5、D【解题分析】

做出满足条件的可行域,根据图形即可求解.【题目详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【题目点拨】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.6、C【解题分析】

设,,,由可得,利用定义将用表示即可.【题目详解】设,,,由及,得,故,所以.故选:C.【题目点拨】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.7、A【解题分析】

由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【题目详解】解:设双曲线的半个焦距为,由题意又,则,,,所以离心率,故选:A.【题目点拨】本题考查双曲线的简单几何性质,属于基础题8、D【解题分析】

根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【题目详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【题目点拨】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.9、C【解题分析】

显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【题目详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【题目点拨】本题考查零点存在性定理的应用,属于基础题.10、C【解题分析】

设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.【题目详解】设直线的方程为:,,,,,联立方程,消去得:,△,,且,,,线段的中点为,,,,,,,,把代入,得,,,故选:【题目点拨】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.11、A【解题分析】

算出集合A、B及,再求补集即可.【题目详解】由,得,所以,又,所以,故或.故选:A.【题目点拨】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.12、B【解题分析】

构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【题目详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【题目点拨】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

计算sinα,再利用诱导公式计算得到答案.【题目详解】由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.【题目点拨】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.14、或【解题分析】

用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【题目详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.【题目点拨】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.15、3【解题分析】

根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【题目详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【题目点拨】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.16、【解题分析】

先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【题目详解】设B,O,E共线,则,解得,从而O为CD中点,故.在△BOD中,BD=2,,易知O的轨迹为阿氏圆,其半径,故.故答案为:.【题目点拨】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)见解析【解题分析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【题目详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【题目点拨】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.18、(1)(2)见解析,【解题分析】

(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【题目详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,,.所以X的分布表为:X012P所以.【题目点拨】本题是一道考查概率和期望的常考题型.19、(1)答案见解析.(2)【解题分析】

(1)通过证明平面,证得,证得,由此证得平面,进而证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【题目详解】(1)因为,所以平面,因为平面,所以.因为,点为中点,所以.因为,所以平面.因为平面,所以平面平面.(2)以点为坐标原点,直线分别为轴,轴,过点与平面垂直的直线为轴,建立空间直角坐标系,则,,,,,,,,,,设平面的一个法向量,则即取,则,,所以,设平面的一个法向量,则即取,则,,所以,设平面与平面所成锐二面角为,则.所以平面与平面所成锐二面角的余弦值为.【题目点拨】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、,;,证明见解析【解题分析】

对函数进行求导,并通过三角恒等变换进行转化求得的表达式,对函数再进行求导并通过三角恒等变换进行转化求得的表达式;根据中,的表达式进行归纳猜想,再利用数学归纳法证明即可.【题目详解】(1),其中,[,其中,(2)猜想,下面用数学归纳法证明:①当时,成立,②假设时,猜想成立即当时,当时,猜想成立由①②对成立【题目点拨】本题考查导数及其应用、三角恒等变换、归纳与猜想和数学归纳法;考查学生的逻辑推理能力和运算求解能力;熟练掌握用数学归纳法进行证明的步骤是求解本题的关键;属于中档题.21、(1)见解析(2)【解题分析】

(1)将消去参数t可得直线的普通方程,利用x=ρcosθ,可将极坐标方程转为直角坐标方程.(2)利用直线被圆截得的弦长公式计算可得答案.【题目详解】(1)由消去参数t得(),由得曲线C的直角坐标方程为:(2)由得,圆心为(1,0),半径为2,圆心到直线的距离为,∴,即,整理得,∵,∴,,,所以直线l的方程为:.【题目点拨】本题考查参数方程,极坐标方程与直角坐标方程之间的互化,考查直线被圆截得的弦长公式的应用,考查分析能力与计算能力,属于基础题.22、(Ⅰ)见解析(Ⅱ)【解题分析】

(Ⅰ)连接交于点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论