2024届江苏省连云港市海庆中学高三数学试题下学期第二次月考试题_第1页
2024届江苏省连云港市海庆中学高三数学试题下学期第二次月考试题_第2页
2024届江苏省连云港市海庆中学高三数学试题下学期第二次月考试题_第3页
2024届江苏省连云港市海庆中学高三数学试题下学期第二次月考试题_第4页
2024届江苏省连云港市海庆中学高三数学试题下学期第二次月考试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省连云港市海庆中学高三数学试题下学期第二次月考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为()A.13 B.12.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④3.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4π B.8π C. D.4.已知函数()的部分图象如图所示,且,则的最小值为()A. B.C. D.5.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.6.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3 B.48cm3 C.60cm3 D.72cm37.设为锐角,若,则的值为()A. B. C. D.8.已知函数,,且,则()A.3 B.3或7 C.5 D.5或89.函数的部分图象大致为()A. B.C. D.10.若实数满足的约束条件,则的取值范围是()A. B. C. D.11.已知集合,,则A. B.C. D.12.已知,函数在区间内没有最值,给出下列四个结论:①在上单调递增;②③在上没有零点;④在上只有一个零点.其中所有正确结论的编号是()A.②④ B.①③ C.②③ D.①②④二、填空题:本题共4小题,每小题5分,共20分。13.定义,已知,,若恰好有3个零点,则实数的取值范围是________.14.若为假,则实数的取值范围为__________.15.已知内角,,的对边分别为,,.,,则_________.16.已知集合,其中,.且,则集合中所有元素的和为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.18.(12分)已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.19.(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.20.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.21.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.22.(10分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

每一次成功的概率为p=26=【题目详解】每一次成功的概率为p=26=13故选:C.【题目点拨】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.2、B【解题分析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【题目详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【题目点拨】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型3、B【解题分析】

由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【题目详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【题目点拨】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.4、A【解题分析】

是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.【题目详解】由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,∴的最小值是.故选:A.【题目点拨】本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.5、D【解题分析】

利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【题目详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【题目点拨】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.6、B【解题分析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.7、D【解题分析】

用诱导公式和二倍角公式计算.【题目详解】.故选:D.【题目点拨】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.8、B【解题分析】

根据函数的对称轴以及函数值,可得结果.【题目详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【题目点拨】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题9、B【解题分析】

图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【题目详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【题目点拨】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。10、B【解题分析】

根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【题目详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,,所以线性目标函数的取值范围为,故选:B.【题目点拨】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.11、D【解题分析】

因为,,所以,,故选D.12、A【解题分析】

先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【题目详解】因为函数在区间内没有最值.所以,或解得或.又,所以.令.可得.且在上单调递减.当时,,且,所以在上只有一个零点.所以正确结论的编号②④故选:A.【题目点拨】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令,得或,再分当,两种情况讨论求解.【题目详解】由题意得:当时,在轴上方,且为增函数,无零点,至多有两个零点,不合题意;当时,令,得,令,得或,如图所示:当时,即时,要有3个零点,则,解得;当时,即时,要有3个零点,则,令,,所以在是减函数,又,要使,则须,所以.综上:实数的取值范围是.故答案为:【题目点拨】本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.14、【解题分析】

由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【题目详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【题目点拨】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.15、【解题分析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【题目详解】由正弦定理得,,.故答案为:.【题目点拨】本题考查了正弦定理求角,三角恒等变换,属于基础题.16、2889【解题分析】

先计算集合中最小的数为,最大的数,可得,求和即得解.【题目详解】当时,集合中最小数;当时,得到集合中最大的数;故答案为:2889【题目点拨】本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】

(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;(2)设点,,,由,,结合斜率公式化简得出,,即,满足,由的任意性,得出直线恒过一个定点.【题目详解】(1)依题意得,解得即椭圆:;(2)设点,,其中,由,得,即,注意到,于是,因此,满足由的任意性知,,,即直线恒过一个定点.【题目点拨】本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.18、(1)12(2)【解题分析】

(1)根据焦距得焦点坐标,结合椭圆上的点的坐标,根据定义;(2)求出椭圆的标准方程,设,联立直线和椭圆,结合韦达定理表示出面积,即可求解最大值.【题目详解】(1)设椭园的焦距为,则,故.则椭圆过点,由椭圆定义知:,故,因此,的周长;(2)由(1)知:,椭圆方程为:设,则,,,,,当且仅当在短轴顶点处取等,故面积的最大值为.【题目点拨】此题考查根据椭圆的焦点和椭圆上的点的坐标求椭圆的标准方程,根据直线与椭圆的交点关系求三角形面积的最值,涉及韦达定理的使用,综合性强,计算量大.19、(1);(2).【解题分析】

(1)根据抛物线的定义,结合已知条件,即可容易求得结果;(2)设出直线的方程,联立抛物线方程,根据直线与抛物线相交则,结合由得到的斜率关系,即可求得斜率的范围.【题目详解】(1)因为动圆与圆外切,并与直线相切,所以点到点的距离比点到直线的距离大.因为圆的半径为,所以点到点的距离等于点到直线的距离,所以圆心的轨迹为抛物线,且焦点坐标为.所以曲线的方程.(2)设,,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范围为.【题目点拨】本题考查由抛物线定义求抛物线方程,涉及直线与抛物线相交结合垂直关系求斜率的范围,属综合中档题.20、【解题分析】

根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.【题目详解】,,即.,解得,.设为曲线任一点,则,又设在矩阵A变换作用得到点,则,即,所以即代入,得,所以曲线的方程为.【题目点拨】本题考查逆矩阵,矩阵与变换等,是基础题.21、(1)(2)证明见解析【解题分析】

(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【题目详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论