版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省定远启明中学高考数学试题全真模拟演练请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的终边经过点,则的值是A.1或 B.或 C.1或 D.或2.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)3.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.4.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)5.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④6.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.7.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.8.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.10.已知函数,则()A.2 B.3 C.4 D.511.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.412.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.14.设的内角的对边分别为,,.若,,,则_____________15.下图是一个算法的流程图,则输出的x的值为_______.16.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.18.(12分)试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M,N.19.(12分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.(1)若当时,,求此时的值;(2)设,且.(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分别是棱AB,PC的中点.求证:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.21.(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.22.(10分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据三角函数的定义求得后可得结论.【题目详解】由题意得点与原点间的距离.①当时,,∴,∴.②当时,,∴,∴.综上可得的值是或.故选B.【题目点拨】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.2、C【解题分析】
根据并集的求法直接求出结果.【题目详解】∵,∴,故选C.【题目点拨】考查并集的求法,属于基础题.3、D【解题分析】
先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【题目详解】由题意,则,,得,由定义知,故选:D.【题目点拨】此题考查向量的坐标运算,引入新定义,属于简单题目.4、D【解题分析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【题目详解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
则,
∴.
故选:D.【题目点拨】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.5、D【解题分析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【题目详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【题目点拨】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.6、D【解题分析】
根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【题目详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【题目点拨】本题主要考查数列递推公式的应用,属于中档题.7、C【解题分析】
由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【题目详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【题目点拨】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.8、B【解题分析】
试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题9、C【解题分析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【题目详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【题目点拨】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.10、A【解题分析】
根据分段函数直接计算得到答案.【题目详解】因为所以.故选:.【题目点拨】本题考查了分段函数计算,意在考查学生的计算能力.11、C【解题分析】
设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【题目详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【题目点拨】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.12、B【解题分析】
连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【题目详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【题目点拨】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先由等面积法求得,利用向量几何意义求解即可.【题目详解】由等面积法可得,依题意可得,,所以.故答案为:【题目点拨】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.14、或【解题分析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)15、1【解题分析】
利用流程图,逐次进行运算,直到退出循环,得到输出值.【题目详解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此时14>10×1+3,输出x,故输出x的值为1.故答案为:.【题目点拨】本题主要考查程序框图的识别,“还原现场”是求解这类问题的良方,侧重考查逻辑推理的核心素养.16、【解题分析】
问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果.【题目详解】解:直线,点,,直线上存在点满足,的轨迹方程是.如图,直线与圆有公共点,圆心到直线的距离:,解得.实数的取值范围为.故答案为:.【题目点拨】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)见解析.【解题分析】
(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;(2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.【题目详解】(1)曲线的极坐标方程可化为,即,将代入曲线的方程得,所以,曲线的直角坐标方程为.将直线的极坐标方程化为普通方程得,联立,得或,则点、,因此,线段的中点为;(2)由(1)得,,易知的垂直平分线的参数方程为(为参数),代入的普通方程得,,因此,.【题目点拨】本题考查曲线的极坐标方程与普通方程之间的转化,同时也考查了直线参数几何意义的应用,涉及韦达定理的应用,考查计算能力,属于中等题.18、y=2sin2x.【解题分析】
计算MN,计算得到函数表达式.【题目详解】∵M,N,∴MN,∴在矩阵MN变换下,→∴曲线y=sinx在矩阵MN变换下的函数解析式为y=2sin2x.【题目点拨】本题考查了矩阵变换,意在考查学生的计算能力.19、(1);(2)(i),;(ii).【解题分析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,两式相加可得所求解析式.(ii)在中,由余弦定理可得,根据的最大值不小于可得关于的不等式,解不等式可得所求.【题目详解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求关系式为,.(ii)当观赏角度的最大时,取得最小值.在中,由余弦定理可得,因为的最大值不小于,所以,解得,经验证知,所以.即两处喷泉间距离的最小值为.【题目点拨】本题考查解三角形在实际中的应用,解题时要注意把条件转化为三角形的边或角,然后借助正余弦定理进行求解.解题时要注意三角形边角关系的运用,同时还要注意所得结果要符合实际意义.20、(1)见解析;(2)见解析【解题分析】
(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面.【题目详解】证明:(1)如图,取的中点,连接,,是棱的中点,底面是矩形,,且,又,分别是棱,的中点,,且,,且,四边形为平行四边形,,又平面,平面,平面;(2),点是棱的中点,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【题目点拨】本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题.21、(1);(2)证明见解析.【解题分析】
(1)根据题意,在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年股权投资转让协议(带借款)3篇
- 2024版股权转让居间合同3篇
- 2024年版高校副校长职位任命协议书
- 机场消防弱电系统施工合同
- 展览馆门窗易拆装维护施工合同
- 理学专业职业生涯规划
- 管道铺设施工合同协议书
- 全新绿色环保物流车辆采购合同
- 2024年广告发布委托协议3篇
- 酒店合作经营协议
- 中药饮片出库单
- 《河南省高标准农田示范区“投融建运管”一体化推进操作导则(试行)》
- 危重患者营养支持的意义及时机
- 林业基础知识考试复习题库(浓缩500题)
- 国开2023春《语言学概论》形考任务1-3+大作业参考答案
- 六年级上册《比》《圆》测试题(A4版)
- 网络用语对现代汉语词汇学习的影响研究
- 中信银行面试问题及答案
- 神经病学 ppt课件 癫痫
- 耳念珠菌院感专家讲座
- 大学生国家安全教育智慧树知到答案章节测试2023年广西科技大学
评论
0/150
提交评论