湖南省岳阳县一中、湘阴县一中2024届高三下学期仿真考试(二)数学试题试卷_第1页
湖南省岳阳县一中、湘阴县一中2024届高三下学期仿真考试(二)数学试题试卷_第2页
湖南省岳阳县一中、湘阴县一中2024届高三下学期仿真考试(二)数学试题试卷_第3页
湖南省岳阳县一中、湘阴县一中2024届高三下学期仿真考试(二)数学试题试卷_第4页
湖南省岳阳县一中、湘阴县一中2024届高三下学期仿真考试(二)数学试题试卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳县一中、湘阴县一中2024届高三下学期仿真考试(二)数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的终边经过点,则A. B.C. D.2.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.03.设为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切5.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.6.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.7.已知函数为奇函数,且,则()A.2 B.5 C.1 D.38.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)9.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.10.已知函数满足,当时,,则()A.或 B.或C.或 D.或11.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.12.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变二、填空题:本题共4小题,每小题5分,共20分。13.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.14.如图,的外接圆半径为,为边上一点,且,,则的面积为______.15.已知各项均为正数的等比数列的前项积为,,(且),则__________.16.在面积为的中,,若点是的中点,点满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.19.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.20.(12分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.21.(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.22.(10分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】因为角的终边经过点,所以,则,即.故选D.2、C【解题分析】

画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.3、A【解题分析】

利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【题目详解】,对应的点的坐标为,位于第一象限.故选:A.【题目点拨】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.4、D【解题分析】

由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【题目详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【题目点拨】本题主要考查直线与圆的位置关系,属于基础题.5、B【解题分析】

利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【题目详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【题目点拨】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.6、B【解题分析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.7、B【解题分析】

由函数为奇函数,则有,代入已知即可求得.【题目详解】.故选:.【题目点拨】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.8、D【解题分析】

求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【题目详解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

则,

∴.

故选:D.【题目点拨】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.9、C【解题分析】

根据程序框图依次计算得到答案.【题目详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【题目点拨】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.10、C【解题分析】

简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【题目详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【题目点拨】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.11、B【解题分析】

首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【题目详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【题目点拨】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.12、C【解题分析】

根据线面平行与垂直的判定与性质逐个分析即可.【题目详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【题目点拨】本题考查直线与平面的位置关系.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【题目详解】(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍,所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为,所以,所以球的体积.故答案为:;.【题目点拨】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.14、【解题分析】

先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【题目详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面积为.故答案为:.【题目点拨】本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.15、【解题分析】

利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【题目详解】由于,,所以,则,∴,,.故答案为:【题目点拨】本小题主要考查等比数列的性质,考查对数运算,属于基础题.16、【解题分析】

由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【题目详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【题目点拨】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有99%把握认为愿意参加新生接待工作与性别有关;(2)详见解析.【解题分析】

(1)计算得到,由此可得结论;(2)根据分层抽样原则可得男生和女生人数,由超几何分布概率公式可求得的所有可能取值所对应的概率,由此得到分布列;根据数学期望计算公式计算可得期望.【题目详解】(1)∵的观测值,有的把握认为愿意参加新生接待工作与性别有关.(2)根据分层抽样方法得:男生有人,女生有人,选取的人中,男生有人,女生有人.则的可能取值有,,,,,的分布列为:.【题目点拨】本题考查独立性检验、分层抽样、超几何分布的分布列和数学期望的求解;关键是能够明确随机变量服从于超几何分布,进而利用超几何分布概率公式求得随机变量每个取值所对应的概率.18、(1)存在;详见解析(2)【解题分析】

(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角.【题目详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面.(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为.【题目点拨】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角.线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的.求空间角一般是建立空间直角坐标系,用空间向量法求空间角.19、(1);(2)【解题分析】

(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【题目详解】(1)∵,∴.由正弦定理,即.得,∵,∴为钝角,为锐角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【题目点拨】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.20、(1)时,有一个零点;当且时,有两个零点;(2)见解析【解题分析】

(1)利用的导函数,求得的最大值的表达式,对进行分类讨论,由此判断出的零点的个数.(2)由,得到和,构造函数,利用导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论