2024届江苏省宿迁市沭阳县高三第二学期学生月考测试卷(2.22)数学试题试卷含附加题_第1页
2024届江苏省宿迁市沭阳县高三第二学期学生月考测试卷(2.22)数学试题试卷含附加题_第2页
2024届江苏省宿迁市沭阳县高三第二学期学生月考测试卷(2.22)数学试题试卷含附加题_第3页
2024届江苏省宿迁市沭阳县高三第二学期学生月考测试卷(2.22)数学试题试卷含附加题_第4页
2024届江苏省宿迁市沭阳县高三第二学期学生月考测试卷(2.22)数学试题试卷含附加题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省宿迁市沭阳县高三第二学期学生月考测试卷(2.22)数学试题试卷含附加题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在的图象大致为A. B.C. D.2.设,,,则、、的大小关系为()A. B. C. D.3.已知椭圆:的左、右焦点分别为,,点,在椭圆上,其中,,若,,则椭圆的离心率的取值范围为()A. B.C. D.4.若函数函数只有1个零点,则的取值范围是()A. B. C. D.5.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.36.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.97.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.128.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.69.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()A.16 B.17 C.18 D.1910.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.11.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.12.向量,,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______.14.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.15.(5分)函数的定义域是____________.16.已知复数(为虚数单位)为纯虚数,则实数的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.18.(12分)选修4­4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.19.(12分)[选修45:不等式选讲]已知都是正实数,且,求证:.20.(12分)已知函数,,若存在实数使成立,求实数的取值范围.21.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.22.(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.2、D【解题分析】

因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【题目点拨】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.3、C【解题分析】

根据可得四边形为矩形,设,,根据椭圆的定义以及勾股定理可得,再分析的取值范围,进而求得再求离心率的范围即可.【题目详解】设,,由,,知,因为,在椭圆上,,所以四边形为矩形,;由,可得,由椭圆的定义可得,①,平方相减可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故选:C【题目点拨】本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题.4、C【解题分析】

转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【题目详解】有1个零点等价于与的图象有1个交点.记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得.所以切线斜率为,所以或.故选:C【题目点拨】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.5、C【解题分析】

否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【题目详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【题目点拨】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.6、A【解题分析】

先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【题目详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【题目点拨】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.7、C【解题分析】

分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.8、B【解题分析】

通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【题目详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【题目点拨】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.9、B【解题分析】

由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,代入四个选项进行验证即可.【题目详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出,则不符合题意,排除;若输出,则,符合题意.故选:B.【题目点拨】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.10、B【解题分析】

根据特殊值及函数的单调性判断即可;【题目详解】解:当时,,无意义,故排除A;又,则,故排除D;对于C,当时,,所以不单调,故排除C;故选:B【题目点拨】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.11、D【解题分析】

首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【题目详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【题目点拨】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.12、D【解题分析】

根据向量平行的坐标运算以及诱导公式,即可得出答案.【题目详解】故选:D【题目点拨】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求.【题目详解】由已知得,又,,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联立消去x整理得,所以,,所以点A坐标为,所以.【题目点拨】本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难.14、【解题分析】

基本事件总数n126,其中三种颜色的球都有包含的基本事件个数m72,由此能求出其中三种颜色的球都有的概率.【题目详解】解:袋中有2个红球,3个白球和4个黄球,从中任取4个球,基本事件总数n126,其中三种颜色的球都有,可能是2个红球,1个白球和1个黄球或1个红球,2个白球和1个黄球或1个红球,1个白球和2个黄球,所以包含的基本事件个数m72,∴其中三种颜色的球都有的概率是p.故答案为:.【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15、【解题分析】

要使函数有意义,则,即,解得,故函数的定义域是.16、【解题分析】

利用复数的乘法求解再根据纯虚数的定义求解即可.【题目详解】解:复数为纯虚数,解得.故答案为:.【题目点拨】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)直接建立空间直角坐标系,然后求出面的法向量和已知线的向量,再结合向量的夹角公式求解即可;(2)先分别得出两个面的法向量,然后根据向量交角公式求解即可.详解:()∵是矩形,∴,又∵平面,∴,,即,,两两垂直,∴以为原点,,,分别为轴,轴,轴建立如图空间直角坐标系,由,,得,,,,,,则,,,设平面的一个法向量为,则,即,令,得,,∴,∴,故与平面所成角的正弦值为.()由()可得,设平面的一个法向量为,则,即,令,得,,∴,∴,故二面角的余弦值为.点睛:考查空间立体几何的线面角,二面角问题,一般直接建立坐标系,结合向量夹角公式求解即可,但要注意坐标的正确性,坐标错则结果必错,务必细心,属于中档题.18、(1),(2)【解题分析】

试题分析:利用将极坐标方程化为直角坐标方程:化简为ρcosθ+ρsinθ=1,即为x+y=1.再利用点到直线距离公式得:设点P的坐标为(2cosα,sinα),得P到直线l的距离试题解析:解:化简为ρcosθ+ρsinθ=1,则直线l的直角坐标方程为x+y=1.设点P的坐标为(2cosα,sinα),得P到直线l的距离,dmax=.考点:极坐标方程化为直角坐标方程,点到直线距离公式19、见解析【解题分析】试题分析:把不等式的左边写成形式,利用柯西不等式即证.试题解析:证明:∵,又,∴考点:柯西不等式20、【解题分析】试题分析:先将问题“存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可获解.试题解析:存在实数使成立,等价于的最大值大于,因为,由柯西不等式:,所以,当且仅当时取“”,故常数的取值范围是.考点:柯西不等式即运用和转化与化归的数学思想的运用.21、(1);(2)存在,.【解题分析】

(1)设以为直径的圆心为,切点为,取关于轴的对称点,连接,计算得到,故轨迹为椭圆,计算得到答案.(2)设直线的方程为,设,联立方程得到,,计算,得到答案.【题目详解】(1)设以为直径的圆心为,切点为,则,取关于轴的对称点,连接,故,所以点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论