江西省各地2024届高中毕业班第二次诊断性检测试题数学试题_第1页
江西省各地2024届高中毕业班第二次诊断性检测试题数学试题_第2页
江西省各地2024届高中毕业班第二次诊断性检测试题数学试题_第3页
江西省各地2024届高中毕业班第二次诊断性检测试题数学试题_第4页
江西省各地2024届高中毕业班第二次诊断性检测试题数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省各地2024届高中毕业班第二次诊断性检测试题数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足(为虚数单位),则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知复数满足(是虚数单位),则=()A. B. C. D.3.设函数定义域为全体实数,令.有以下6个论断:①是奇函数时,是奇函数;②是偶函数时,是奇函数;③是偶函数时,是偶函数;④是奇函数时,是偶函数⑤是偶函数;⑥对任意的实数,.那么正确论断的编号是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤4.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.25.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.46.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为()A. B. C. D.7.设M是边BC上任意一点,N为AM的中点,若,则的值为()A.1 B. C. D.8.函数的图象大致为()A. B.C. D.9.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.10010.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件11.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.12.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,x5的系数是_________.(用数字填写答案)14.已知函数,若,则的取值范围是__15.在中,内角所对的边分别为,若,的面积为,则_______,_______.16.已知,为虚数单位,且,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.18.(12分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,,的斜率分别为,,,求的值.19.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.20.(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:处罚金额(单位:元)5101520会闯红灯的人数50402010若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?21.(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.22.(10分)在①;②;③这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足________________,,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【题目详解】由得:,对应的点的坐标为,位于第一象限.故选:.【题目点拨】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.2、A【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由,得,.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3、A【解题分析】

根据函数奇偶性的定义即可判断函数的奇偶性并证明.【题目详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,,此时,故⑥错误;故③④正确.故选:A【题目点拨】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.4、C【解题分析】

由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【题目详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【题目点拨】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.5、B【解题分析】

因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【题目详解】请在此输入详解!6、C【解题分析】

不妨设在第一象限,故,根据得到,解得答案.【题目详解】不妨设在第一象限,故,,即,即,解得,(舍去).故选:.【题目点拨】本题考查了椭圆的离心率,意在考查学生的计算能力.7、B【解题分析】

设,通过,再利用向量的加减运算可得,结合条件即可得解.【题目详解】设,则有.又,所以,有.故选B.【题目点拨】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.8、A【解题分析】

用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【题目详解】因为,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【题目点拨】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.9、B【解题分析】

根据程序框图中程序的功能,可以列方程计算.【题目详解】由题意,.故选:B.【题目点拨】本题考查程序框图,读懂程序的功能是解题关键.10、D【解题分析】

由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【题目详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【题目点拨】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.11、B【解题分析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:

直三棱柱的体积为,消去的三棱锥的体积为,

∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.12、C【解题分析】

根据题目中的基底定义求解.【题目详解】因为,,,,,,所以能作为集合的基底,故选:C【题目点拨】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-189【解题分析】由二项式定理得,令r=5得x5的系数是.14、【解题分析】

根据分段函数的性质,即可求出的取值范围.【题目详解】当时,,,当时,,所以,故的取值范围是.故答案为:.【题目点拨】本题考查分段函数的性质,已知分段函数解析式求参数范围,还涉及对数和指数的运算,属于基础题.15、【解题分析】

由已知及正弦定理,三角函数恒等变换的应用可得,从而求得,结合范围,即可得到答案运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【题目详解】由已知及正弦定理可得,可得:解得,即,由面积公式可得:,即由余弦定理可得:即有解得【题目点拨】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案16、4【解题分析】

解:利用复数相等,可知由有.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】

(1)取的中点,连接,,证明平面得出,再得出;(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案.【题目详解】(1)证明:取的中点,连接,,,,,,,故,又,,平面,平面,,,分别是,的中点,,.(2)解:四边形是正方形,,又,,平面,平面,在平面内作直线的垂线,以为原点,以,,为所在直线为坐标轴建立空间直角坐标系,则,0,,,1,,,2,,,0,,,1,,,2,,,1,,设平面的法向量为,,,则,即,令可得:,,,,.直线与平面所成角的正弦值为,.【题目点拨】本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题.18、(1)(2)【解题分析】

(1)根据抛物线的焦点求得椭圆的焦点,由此求得,结合椭圆离心率求得,进而求得,从而求得椭圆的标准方程,求得椭圆上顶点的坐标,由此求得直线的方程.联立直线的方程和椭圆方程,求得两点的纵坐标,由此求得的面积.(2)求得两点的坐标,设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,由此求得的值,根据在椭圆上求得的值,由此求得的值.【题目详解】(1)因为抛物线的焦点坐标为,所以椭圆的右焦点的坐标为,所以,因为椭圆的离心率为,所以,解得,所以,故椭圆的标准方程为.其上顶点为,所以直线:,联立,消去整理得,解得,,所以的面积.(2)由题知,,,设,.由题还可知,直线的斜率不为0,故可设:.由,消去,得,所以所以,又因为点在椭圆上,所以,所以.【题目点拨】本小题主要考查抛物线的焦点,椭圆的标准方程和几何性质、直线与椭圆,三角形的面积等基础知识,考查推理论证能力、运算求解能力,化归与转化思想、数形结合思想、函数与方程思想.19、(1)见解析,(2)最小正整数的值为35.【解题分析】

(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出的取值范围,进而求出最小值.【题目详解】解析:(1)由题意可得,当时,,∴,,当时,,整理可得,∴是首项为1,公差为1的等差数列,∴,.(2)由(1)可得,∴,解得,∴最小正整数的值为35.【题目点拨】本题考查了等差中项,考查了等差数列的定义,考查了与的关系,考查了裂项相消求和.当已知有与的递推关系时,常代入进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.20、(1)降低(2)【解题分析】

(1)计算出罚金定为10元时行人闯红灯的概率,和不进行处罚时行人闯红灯的概率,求解即可;(2)闯红灯的市民有80人,其中类市民和类市民各有40人,根据分层抽样法抽出4人依次排序,计算所求的概率值.【题目详解】解:(1)当罚金定为10元时,行人闯红灯的概率为;不进行处罚,行人闯红灯的概率为;所以当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低;(2)由题可知,闯红灯的市民有80人,类市民和类市民各有40人故分别从类市民和类市民各抽出两人,4人依次排序记类市民中抽取的两人对应的编号为,类市民中抽取的两人编号为则4人依次排序分别为,,,,,,,,,,,,共有种前两位均为类市民排序为,,有种,所以前两位均为类市民的概率是.【题目点拨】本题主要考查了计算古典概型的概率,属于中档题.21、(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【解题分析】

(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可得,即又即可得证.【题目详解】(1)解:的定义域为,,当,时,,则在上单调递增;当,时,令,得,令,得,则在上单调递减,在上单调递增;当,时,,则在上单调递减;当,时,令,得,令,得,则在上单调递增,在上单调递减;(2)证明:设函数,则.因为,所以,,则,从而在上单调递减,所以,即.(3)证明:当时,.由(1)知,,所以,即.当时,,,则,即,又,所以,即.【题目点拨】本题考查利用导数研究含参函数的单调性,利用导数证明不等式,属于难题.22、横线处任填一个都可以,面积为.【解题分析】

无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积.【题目详解】在横线上填写“”.解:由正弦定理,得.由,得.由,得.所以.又(若,则这与矛盾),所以.又,得.由余弦定理及,得,即.将代入,解得.所以.在横线上填

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论